mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-21 04:00:15 +00:00
大改
This commit is contained in:
78
vllm_npu/torchair/ops/torchair_layernorm.py
Normal file
78
vllm_npu/torchair/ops/torchair_layernorm.py
Normal file
@@ -0,0 +1,78 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from vllm.config import get_current_vllm_config
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
|
||||
_original_re_init = RMSNorm.__init__
|
||||
|
||||
|
||||
def torchair_rmsnorm_init_(
|
||||
self,
|
||||
hidden_size: int,
|
||||
eps: float = 1e-6,
|
||||
var_hidden_size: Optional[int] = None,
|
||||
has_weight: bool = True,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
) -> None:
|
||||
_original_re_init(self, hidden_size, eps, var_hidden_size, has_weight,
|
||||
dtype)
|
||||
vllm_config = get_current_vllm_config()
|
||||
self.bias = None
|
||||
# quantization with anti_method m4 will generate none-zero norm bias
|
||||
if vllm_config.quant_config is not None and \
|
||||
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
|
||||
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
|
||||
requires_grad=False)
|
||||
|
||||
|
||||
def torchair_rmsnorm_forward_oot(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""AscendRMSNorm forward in torchair mode.
|
||||
|
||||
The key difference from the original implementation is the removal of operators
|
||||
from the torch.ops.vllm class, as these operators only function in non-torchair
|
||||
modes. Adding them back would cause the graph compilation to fail.
|
||||
"""
|
||||
|
||||
import torch_npu
|
||||
|
||||
from vllm_npu.utils import is_310p
|
||||
if residual is not None:
|
||||
if is_310p():
|
||||
orig_dtype = residual.dtype
|
||||
x = x + residual.to(x.dtype)
|
||||
residual = x.to(orig_dtype)
|
||||
x, _ = torch_npu.npu_rms_norm(x, self.weight,
|
||||
self.variance_epsilon)
|
||||
else:
|
||||
x, _, residual = torch_npu.npu_add_rms_norm(
|
||||
x, residual, self.weight, self.variance_epsilon)
|
||||
if self.bias is not None:
|
||||
x.add_(self.bias)
|
||||
return x, residual
|
||||
|
||||
x, residual = torch_npu.npu_rms_norm(x, self.weight, self.variance_epsilon)
|
||||
if self.bias is not None:
|
||||
x.add_(self.bias)
|
||||
return x
|
||||
Reference in New Issue
Block a user