mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
120
vllm_npu/torchair/ops/sequence_parallel.py
Normal file
120
vllm_npu/torchair/ops/sequence_parallel.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from vllm.distributed import (get_tensor_model_parallel_world_size,
|
||||
get_tp_group, tensor_model_parallel_all_gather,
|
||||
tensor_model_parallel_reduce_scatter)
|
||||
from vllm.forward_context import get_forward_context
|
||||
|
||||
from vllm_npu.platform import NPUPlatform
|
||||
|
||||
|
||||
class MetadataForPadding:
|
||||
|
||||
def __init__(self,
|
||||
padding_flag=False,
|
||||
lengths_sum_padding=0,
|
||||
lengths_sum_unpadding=0,
|
||||
pad_size=0,
|
||||
not_dummy_and_is_prefill=False):
|
||||
self.padding_flag = padding_flag
|
||||
self.not_dummy_and_is_prefill = not_dummy_and_is_prefill
|
||||
|
||||
self.lengths_sum_padding = lengths_sum_padding
|
||||
self.lengths_sum_unpadding = lengths_sum_unpadding
|
||||
self.pad_size = pad_size
|
||||
|
||||
self.tp_size = get_tp_group().world_size
|
||||
self.tp_rank_in_group = get_tp_group().rank_in_group
|
||||
|
||||
assert self.lengths_sum_padding % self.tp_size == 0
|
||||
self.slice_size = self.lengths_sum_padding // self.tp_size
|
||||
|
||||
self.mc2_mask = torch.zeros(
|
||||
self.lengths_sum_padding,
|
||||
dtype=torch.bool,
|
||||
device=NPUPlatform.device_type,
|
||||
)
|
||||
self.mc2_mask[:lengths_sum_unpadding] = True
|
||||
|
||||
def padding_aligned_reduce_scatter(self,
|
||||
data: torch.Tensor) -> torch.Tensor:
|
||||
if self.padding_flag:
|
||||
pad_size = self.pad_size
|
||||
padded_data = F.pad(data, (0, 0, 0, pad_size))
|
||||
else:
|
||||
padded_data = data
|
||||
padded_data_reduce_scatter = tensor_model_parallel_reduce_scatter(
|
||||
padded_data, 0)
|
||||
|
||||
return padded_data_reduce_scatter
|
||||
|
||||
def allgather_unpadding_aligned(self,
|
||||
padded_data: torch.Tensor) -> torch.Tensor:
|
||||
padded_data_allgather = tensor_model_parallel_all_gather(
|
||||
padded_data, 0)
|
||||
if self.padding_flag:
|
||||
lengths_sum_unpadding = self.lengths_sum_unpadding
|
||||
unpadding_data = padded_data_allgather[:lengths_sum_unpadding]
|
||||
else:
|
||||
unpadding_data = padded_data_allgather
|
||||
return unpadding_data
|
||||
|
||||
def padding_slice(self, data: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
padded_data = F.pad(data, (0, 0, 0, self.pad_size))
|
||||
start = self.tp_rank_in_group * self.slice_size
|
||||
end = start + self.slice_size
|
||||
slice_data = padded_data[start:end]
|
||||
|
||||
return slice_data
|
||||
|
||||
def padding_aligned_scatter(self, data: torch.Tensor) -> torch.Tensor:
|
||||
if self.padding_flag:
|
||||
pad_size = self.pad_size
|
||||
padded_data = F.pad(data, (0, 0, 0, pad_size))
|
||||
else:
|
||||
padded_data = data
|
||||
# padded_data = data
|
||||
padded_data = torch.tensor_split(padded_data, self.tp_size, dim=0)
|
||||
|
||||
padded_data_reduce_scatter = padded_data[self.tp_rank_in_group]
|
||||
|
||||
return padded_data_reduce_scatter
|
||||
|
||||
|
||||
def init_metadata_for_sp(input_ids, enable_sequence_parallelism):
|
||||
if not enable_sequence_parallelism:
|
||||
return MetadataForPadding(padding_flag=False,
|
||||
not_dummy_and_is_prefill=False)
|
||||
|
||||
is_perifll = 0
|
||||
attn_metadata = get_forward_context().attn_metadata
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
if attn_metadata is not None:
|
||||
if hasattr(attn_metadata,
|
||||
'is_only_prefill') and attn_metadata.is_only_prefill:
|
||||
is_perifll = 1
|
||||
if hasattr(attn_metadata,
|
||||
'num_prefills') and attn_metadata.num_prefills > 0:
|
||||
is_perifll = 1
|
||||
|
||||
if is_perifll:
|
||||
lengths_sum_unpadding = input_ids.shape[0]
|
||||
lengths_sum_padding = (
|
||||
(lengths_sum_unpadding + tp_size - 1) // tp_size) * tp_size
|
||||
if lengths_sum_unpadding == lengths_sum_padding:
|
||||
padding_flag = False
|
||||
else:
|
||||
padding_flag = True
|
||||
pad_size = lengths_sum_padding - lengths_sum_unpadding
|
||||
_metadata_for_padding = MetadataForPadding(
|
||||
lengths_sum_unpadding=lengths_sum_unpadding,
|
||||
lengths_sum_padding=lengths_sum_padding,
|
||||
padding_flag=padding_flag,
|
||||
pad_size=pad_size,
|
||||
not_dummy_and_is_prefill=True)
|
||||
|
||||
return _metadata_for_padding
|
||||
|
||||
return MetadataForPadding(padding_flag=False,
|
||||
not_dummy_and_is_prefill=False)
|
||||
Reference in New Issue
Block a user