mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
218
vllm_npu/torchair/models/torchair_deepseek_mtp.py
Normal file
218
vllm_npu/torchair/models/torchair_deepseek_mtp.py
Normal file
@@ -0,0 +1,218 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Adapted from vllm/model_executor/models/deepseek_mtp.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
#
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.attention.backends.abstract import AttentionMetadata
|
||||
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.models.deepseek_mtp import (
|
||||
DeepSeekMTP, DeepSeekMultiTokenPredictor, DeepSeekMultiTokenPredictorLayer,
|
||||
SharedHead)
|
||||
from vllm.model_executor.models.utils import maybe_prefix
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from vllm_npu.torchair.models.torchair_deepseek_v2 import \
|
||||
TorchairDeepseekV2DecoderLayer
|
||||
|
||||
|
||||
class TorchairDeepSeekShareHead(SharedHead):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "") -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "head"))
|
||||
|
||||
|
||||
class TorchairDeepSeekMultiTokenPredictorLayer(DeepSeekMultiTokenPredictorLayer
|
||||
):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
prefix: str,
|
||||
model_config: ModelConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.eh_proj = nn.Linear(config.hidden_size * 2,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.shared_head = TorchairDeepSeekShareHead(config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix,
|
||||
"shared_head"))
|
||||
self.mtp_block = TorchairDeepseekV2DecoderLayer(
|
||||
config, prefix, model_config, cache_config, quant_config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
previous_hidden_states: torch.Tensor,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_index: int = 0,
|
||||
) -> torch.Tensor:
|
||||
assert inputs_embeds is not None
|
||||
# masking inputs at position 0, as not needed by MTP
|
||||
inputs_embeds = torch.where((positions == 0).unsqueeze(-1),
|
||||
torch.zeros_like(inputs_embeds),
|
||||
inputs_embeds)
|
||||
inputs_embeds = self.enorm(inputs_embeds)
|
||||
previous_hidden_states = self.hnorm(previous_hidden_states)
|
||||
|
||||
hidden_states = self.eh_proj(
|
||||
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
|
||||
|
||||
replace_allreduce = hidden_states.shape[0] % self.tp_size == 0
|
||||
|
||||
hidden_states, residual = self.mtp_block(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
residual=None,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
replace_allreduce=replace_allreduce)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TorchairDeepSeekMultiTokenPredictor(DeepSeekMultiTokenPredictor):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
self.mtp_start_layer_idx = config.num_hidden_layers
|
||||
self.num_mtp_layers = config.num_nextn_predict_layers
|
||||
# to map the exact layer index from weights
|
||||
self.layers = torch.nn.ModuleDict({
|
||||
str(idx):
|
||||
TorchairDeepSeekMultiTokenPredictorLayer(
|
||||
config,
|
||||
f"{prefix}.layers.{idx}",
|
||||
model_config=vllm_config.model_config,
|
||||
cache_config=vllm_config.cache_config,
|
||||
quant_config=vllm_config.quant_config,
|
||||
)
|
||||
for idx in range(self.mtp_start_layer_idx,
|
||||
self.mtp_start_layer_idx + self.num_mtp_layers)
|
||||
})
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
|
||||
# Note: torch._dynamo.exc.Unsupported: builtin: str
|
||||
self.layers_list = [
|
||||
self.layers[str(idx)]
|
||||
for idx in range(self.mtp_start_layer_idx,
|
||||
self.mtp_start_layer_idx + self.num_mtp_layers)
|
||||
]
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
previous_hidden_states: torch.Tensor,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
||||
step_kv_cache = kv_caches[
|
||||
current_step_idx] if kv_caches is not None else None
|
||||
return self.layers_list[current_step_idx](
|
||||
input_ids,
|
||||
positions,
|
||||
step_kv_cache,
|
||||
attn_metadata,
|
||||
previous_hidden_states,
|
||||
inputs_embeds,
|
||||
current_step_idx,
|
||||
)
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
||||
mtp_layer = self.layers_list[current_step_idx]
|
||||
logits = self.logits_processor(mtp_layer.shared_head.head,
|
||||
mtp_layer.shared_head(hidden_states))
|
||||
return logits
|
||||
|
||||
|
||||
class TorchairDeepSeekMTP(DeepSeekMTP):
|
||||
# NOTE 1.The quantized MTP layer of deepseek on the NPU is not quantized;
|
||||
# NOTE 2.The description file generated by the current msmodelslim tool does not have
|
||||
# MTP layer info. Please manually add it and set the value to FLOAT.
|
||||
packed_modules_mapping = {
|
||||
"gate_up_proj": ["gate_proj", "up_proj"],
|
||||
"experts":
|
||||
["experts.0.gate_proj", "experts.0.up_proj", "experts.0.down_proj"]
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
self.config = vllm_config.model_config.hf_config
|
||||
self.model = TorchairDeepSeekMultiTokenPredictor(
|
||||
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
hidden_states: Optional[torch.Tensor] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, hidden_states, inputs_embeds,
|
||||
spec_step_idx)
|
||||
return hidden_states
|
||||
Reference in New Issue
Block a user