mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
537
vllm_npu/torchair/models/qwen3_moe.py
Normal file
537
vllm_npu/torchair/models/qwen3_moe.py
Normal file
@@ -0,0 +1,537 @@
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2024 The Qwen team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Adapted from vllm/model_executor/models/qwen3_moe.py
|
||||
# This file is a part of the vllm-ascend project.
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import vllm.envs as envs
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, CompilationLevel, VllmConfig
|
||||
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||
from vllm.distributed.parallel_state import (get_dp_group, get_ep_group,
|
||||
get_tp_group)
|
||||
from vllm.forward_context import get_forward_context
|
||||
from vllm.model_executor.layers.fused_moe.layer import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.models.interfaces import (MixtureOfExperts,
|
||||
SupportsLoRA, SupportsPP)
|
||||
from vllm.model_executor.models.qwen3_moe import (Qwen3MoeAttention,
|
||||
Qwen3MoeDecoderLayer,
|
||||
Qwen3MoeForCausalLM,
|
||||
Qwen3MoeMLP, Qwen3MoeModel,
|
||||
Qwen3MoeSparseMoeBlock)
|
||||
from vllm.model_executor.models.utils import (
|
||||
PPMissingLayer, extract_layer_index,
|
||||
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from vllm_npu.ascend_config import get_ascend_config
|
||||
from vllm_npu.attention.attention_v1 import AscendAttentionState
|
||||
from vllm_npu.torchair.ops.sequence_parallel import (MetadataForPadding,
|
||||
init_metadata_for_sp)
|
||||
from vllm_npu.torchair.ops.torchair_fused_moe import TorchairAscendFusedMoE
|
||||
|
||||
|
||||
class CustomSparseMoeBlock(Qwen3MoeSparseMoeBlock):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
if self.tp_size > config.num_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {config.num_experts}.")
|
||||
|
||||
self.gate = ReplicatedLinear(
|
||||
config.hidden_size,
|
||||
config.num_experts,
|
||||
bias=False,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.gate",
|
||||
)
|
||||
|
||||
self.experts = TorchairAscendFusedMoE(
|
||||
num_experts=config.num_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.moe_intermediate_size,
|
||||
reduce_results=False,
|
||||
renormalize=config.norm_topk_prob,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.experts",
|
||||
)
|
||||
|
||||
self.top_k = config.num_experts_per_tok
|
||||
|
||||
self.dp_size = get_dp_group().world_size
|
||||
|
||||
self.tp_group = get_tp_group().device_group
|
||||
self.tp_rank = get_tp_group().rank_in_group
|
||||
self.ep_group = get_ep_group()
|
||||
|
||||
self.params_dtype = torch.get_default_dtype()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attn_metadata=None,
|
||||
_metadata_for_padding: Optional[MetadataForPadding] = None,
|
||||
):
|
||||
if attn_metadata is None:
|
||||
attn_metadata = get_forward_context().attn_metadata
|
||||
# when profile runs, force experts to load balanced tokens
|
||||
# to avoid high memory consumption on a single rank.
|
||||
enable_force_load_balance = get_forward_context().in_profile_run
|
||||
is_prefill = get_forward_context().with_prefill
|
||||
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
|
||||
hidden_states = self.experts(
|
||||
hidden_states=hidden_states,
|
||||
router_logits=router_logits,
|
||||
is_prefill=is_prefill,
|
||||
top_k=self.top_k,
|
||||
enable_force_load_balance=enable_force_load_balance,
|
||||
shared_experts=None,
|
||||
_metadata_for_padding=_metadata_for_padding,
|
||||
)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CustomQwen3MoeAttention(Qwen3MoeAttention):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
head_dim: Optional[int] = None,
|
||||
rms_norm_eps: float = 1e-06,
|
||||
qkv_bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=qkv_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj")
|
||||
|
||||
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj")
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn")
|
||||
|
||||
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
|
||||
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
|
||||
ascend_config = get_ascend_config()
|
||||
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
|
||||
|
||||
@staticmethod
|
||||
def normalize_qkv(qkv: torch.Tensor, q_size: int, kv_size: int,
|
||||
head_dim: int, q_norm, k_norm):
|
||||
q, k, v = qkv.split([q_size, kv_size, kv_size], dim=-1)
|
||||
|
||||
q_by_head = q.view(*q.shape[:-1], q.shape[-1] // head_dim, head_dim)
|
||||
q_by_head = q_norm(q_by_head)
|
||||
q = q_by_head.view(q.shape)
|
||||
|
||||
k_by_head = k.view(*k.shape[:-1], k.shape[-1] // head_dim, head_dim)
|
||||
k_by_head = k_norm(k_by_head)
|
||||
k = k_by_head.view(k.shape)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = self.normalize_qkv(qkv, self.q_size, self.kv_size,
|
||||
self.head_dim, self.q_norm, self.k_norm)
|
||||
|
||||
if (self.torchair_graph_enabled and attn_metadata is not None and
|
||||
attn_metadata.attn_state == AscendAttentionState.DecodeOnly):
|
||||
q, k = self.rotary_emb(positions,
|
||||
q,
|
||||
k,
|
||||
is_prefill=False,
|
||||
is_qwen_torchair=True)
|
||||
forward_kwargs = {}
|
||||
if envs.VLLM_USE_V1:
|
||||
output_shape = q.shape
|
||||
output = torch.empty(output_shape,
|
||||
dtype=q.dtype,
|
||||
device=q.device)
|
||||
forward_kwargs['output'] = output
|
||||
|
||||
attn_output = self.attn.impl.forward(self.attn,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
trace_flag=False,
|
||||
**forward_kwargs)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
else:
|
||||
q, k = self.rotary_emb(positions, q, k, is_qwen_torchair=True)
|
||||
attn_output = self.attn(q, k, v)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class CustomQwen3MoeDecoderLayer(Qwen3MoeDecoderLayer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
vllm_config: Optional[VllmConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
|
||||
nn.Module.__init__(self)
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = CustomQwen3MoeAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
rms_norm_eps=config.rms_norm_eps,
|
||||
qkv_bias=getattr(config, 'attention_bias', False),
|
||||
head_dim=getattr(config, 'head_dim', None),
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
# `mlp_only_layers` in the config.
|
||||
layer_idx = extract_layer_index(prefix)
|
||||
mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
|
||||
config.mlp_only_layers)
|
||||
self.use_aclgraph = (vllm_config is not None
|
||||
and vllm_config.compilation_config.level
|
||||
== CompilationLevel.PIECEWISE
|
||||
and not vllm_config.model_config.enforce_eager)
|
||||
if (layer_idx not in mlp_only_layers) and (
|
||||
config.num_experts > 0 and
|
||||
(layer_idx + 1) % config.decoder_sparse_step == 0):
|
||||
if not self.use_aclgraph:
|
||||
# FIXME: custom sparse moe block doesn't work with aclgraph.
|
||||
self.mlp = CustomSparseMoeBlock(config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
else:
|
||||
self.mlp = Qwen3MoeSparseMoeBlock(vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
else:
|
||||
self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
self.enable_sequence_parallelism = (
|
||||
vllm_config.compilation_config.pass_config.
|
||||
enable_sequence_parallelism if vllm_config is not None else False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
_metadata_for_padding: Optional[MetadataForPadding] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
# To prevent precision issues during the decoder phase when only prefilling enables SP
|
||||
if not self.enable_sequence_parallelism:
|
||||
self.self_attn.o_proj.reduce_results = True
|
||||
else:
|
||||
self.self_attn.o_proj.reduce_results = not _metadata_for_padding.not_dummy_and_is_prefill if _metadata_for_padding is not None else True
|
||||
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
residual = _metadata_for_padding.padding_slice(residual)
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
hidden_states = _metadata_for_padding.allgather_unpadding_aligned(
|
||||
hidden_states)
|
||||
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
hidden_states = _metadata_for_padding.padding_aligned_reduce_scatter(
|
||||
hidden_states)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
|
||||
if not self.use_aclgraph:
|
||||
hidden_states = self.mlp(
|
||||
hidden_states, _metadata_for_padding=_metadata_for_padding)
|
||||
else:
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class CustomQwen3MoeModel(Qwen3MoeModel):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
|
||||
parallel_config = vllm_config.parallel_config
|
||||
eplb_config = parallel_config.eplb_config
|
||||
self.num_redundant_experts = eplb_config.num_redundant_experts
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.config = config
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
prefix=f"{prefix}.embed_tokens")
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: CustomQwen3MoeDecoderLayer(
|
||||
config=config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
vllm_config=vllm_config,
|
||||
prefix=prefix),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
_metadata_for_padding: Optional[MetadataForPadding] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
residual,
|
||||
kv_caches[i -
|
||||
self.start_layer] if kv_caches is not None else None,
|
||||
attn_metadata,
|
||||
_metadata_for_padding=_metadata_for_padding)
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
hidden_states = _metadata_for_padding.allgather_unpadding_aligned(
|
||||
hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CustomQwen3MoeForCausalLM(Qwen3MoeForCausalLM):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
"experts":
|
||||
["experts.0.gate_proj", "experts.0.up_proj", "experts.0.down_proj"],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
SupportsPP.__init__(self)
|
||||
SupportsLoRA.__init__(self)
|
||||
MixtureOfExperts.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.model = CustomQwen3MoeModel(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"))
|
||||
if self.config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
self.enable_sequence_parallelism = vllm_config.compilation_config.pass_config.enable_sequence_parallelism
|
||||
# Set MoE hyperparameters
|
||||
self.expert_weights: list[torch.Tensor] = []
|
||||
|
||||
self.moe_layers: list[FusedMoE] = []
|
||||
example_layer = None
|
||||
for layer in self.model.layers:
|
||||
if isinstance(layer, PPMissingLayer):
|
||||
continue
|
||||
|
||||
assert isinstance(layer, Qwen3MoeDecoderLayer)
|
||||
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
|
||||
example_layer = layer.mlp
|
||||
self.moe_layers.append(layer.mlp.experts)
|
||||
|
||||
if example_layer is None:
|
||||
raise RuntimeError("No Qwen3MoE layer found in the model.layers.")
|
||||
|
||||
self.num_moe_layers = len(self.moe_layers)
|
||||
self.num_expert_groups = 1
|
||||
self.num_shared_experts = 0
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
_metadata_for_padding = init_metadata_for_sp(
|
||||
input_ids, self.enable_sequence_parallelism)
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors,
|
||||
inputs_embeds, _metadata_for_padding)
|
||||
return hidden_states
|
||||
Reference in New Issue
Block a user