This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -0,0 +1,234 @@
import ast
import vllm.envs as envs
from vllm.config.speculative import SpeculativeConfig
from vllm.logger import logger
def __post_init__(self):
# Note: "method" is a new parameter that helps to extend the
# configuration of non-model-based proposers, and the "model" parameter
# will be used to set the draft model, eagle head, or additional weight
# when needed. If users do not specify "method", the speculative method
# will be detected automatically if possible. If the speculative method
# can not be detected, it will be considered as the "draft_model" by
# default.
if self.model is None and self.num_speculative_tokens is not None:
# TODO(Shangming): Refactor mtp configuration logic when supporting
if (self.target_model_config
and self.target_model_config.hf_text_config.model_type
in ("deepseek_v3", "deepseek_v32", "mimo", "ernie4_5_moe",
"qwen3_next")):
# use the draft model from the same model:
self.model = self.target_model_config.model
# Align the quantization of draft model for cases such as
# --quantization fp8 with a bf16 checkpoint.
if not self.quantization:
self.quantization = self.target_model_config.quantization
elif self.method in ("ngram", "[ngram]"):
self.model = "ngram"
else:
raise ValueError("num_speculative_tokens was provided but without "
"speculative model.")
# Automatically configure the method for ngram when "model" is used
# instead of "method"
if self.method is None and (self.model is not None
and self.model in ("ngram", "[ngram]")):
self.method = "ngram"
if self.method in ("ngram", "[ngram]"):
# Unified to "ngram" internally
self.method = "ngram"
# Set default values if not provided
if (self.prompt_lookup_min is None and self.prompt_lookup_max is None):
# TODO(woosuk): Tune these values. They are arbitrarily chosen.
self.prompt_lookup_min = 5
self.prompt_lookup_max = 5
elif self.prompt_lookup_min is None:
assert self.prompt_lookup_max is not None
self.prompt_lookup_min = self.prompt_lookup_max
elif self.prompt_lookup_max is None:
assert self.prompt_lookup_min is not None
self.prompt_lookup_max = self.prompt_lookup_min
# Validate values
if self.prompt_lookup_min < 1:
raise ValueError(
f"prompt_lookup_min={self.prompt_lookup_min} must be > 0")
if self.prompt_lookup_max < 1:
raise ValueError(
f"prompt_lookup_max={self.prompt_lookup_max} must be > 0")
if self.prompt_lookup_min > self.prompt_lookup_max:
raise ValueError(
f"prompt_lookup_min={self.prompt_lookup_min} must "
f"be <= prompt_lookup_max={self.prompt_lookup_max}")
# TODO: current we still need extract vocab_size from target model
# config, in future, we may try refactor it out, and set
# draft related config as None here.
self.draft_model_config = self.target_model_config
self.draft_parallel_config = self.target_parallel_config
else:
self.prompt_lookup_max = 0
self.prompt_lookup_min = 0
if self.model is not None:
# TODO: Move this import to the top once `ModelConfig`
# lives in `vllm.config.model`.
from vllm.config import ModelConfig
self.draft_model_config = ModelConfig(
model=self.model,
runner="draft",
tokenizer=self.target_model_config.tokenizer,
tokenizer_mode=self.target_model_config.tokenizer_mode,
trust_remote_code=self.target_model_config.trust_remote_code,
allowed_local_media_path=self.target_model_config.
allowed_local_media_path,
allowed_media_domains=self.target_model_config.
allowed_media_domains,
dtype=self.target_model_config.dtype,
seed=self.target_model_config.seed,
revision=self.revision,
code_revision=self.code_revision,
tokenizer_revision=self.target_model_config.tokenizer_revision,
spec_target_max_model_len=self.target_model_config.
max_model_len,
quantization=self.quantization,
enforce_eager=self.target_model_config.enforce_eager,
max_logprobs=self.target_model_config.max_logprobs,
hf_overrides=SpeculativeConfig.hf_config_override,
)
# Automatically detect the method
if self.method in ('eagle', 'eagle3'):
pass
# examples:
# yuhuili/EAGLE-LLaMA3-Instruct-8B
# yuhuili/EAGLE3-LLaMA3.1-Instruct-8B
# AngelSlim/Qwen3-8B_eagle3
elif "eagle-" in self.draft_model_config.model.lower():
self.method = "eagle"
elif "eagle3" in self.draft_model_config.model.lower():
self.method = "eagle3"
elif self.draft_model_config.hf_config.model_type == "medusa":
self.method = "medusa"
elif (self.draft_model_config.hf_config.model_type ==
"mlp_speculator"):
self.method = "mlp_speculator"
elif (self.draft_model_config.hf_config.model_type
in ("deepseek_mtp", "mimo_mtp", "glm4_moe_mtp")):
self.method = "deepseek_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"All Deepseek MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
elif (self.draft_model_config.hf_config.model_type == "ernie_mtp"):
self.method = "ernie_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"All Ernie MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
elif (self.draft_model_config.hf_config.model_type ==
"qwen3_next_mtp"):
self.method = "qwen3_next_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"All Qwen3Next MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
elif (self.draft_model_config.hf_config.model_type
in ("longcat_flash_mtp")):
self.method = "longcat_flash_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"LongCat MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
else:
self.method = "draft_model"
raise NotImplementedError(
"Speculative decoding with draft model is not "
"supported yet. Please consider using other "
"speculative decoding methods such as ngram, medusa, "
"eagle, or deepseek_mtp.")
# Replace hf_config for EAGLE draft_model
if self.method in ("eagle", "eagle3"):
if self.enable_chunked_prefill and not envs.VLLM_USE_V1:
raise ValueError(
"Chunked prefill and EAGLE are not compatible "
"when using V0.")
from vllm.transformers_utils.configs import SpeculatorsConfig
from vllm.transformers_utils.configs.eagle import EAGLEConfig
if isinstance(self.draft_model_config.hf_config,
(EAGLEConfig, SpeculatorsConfig)):
pass
else:
eagle_config = EAGLEConfig(
self.draft_model_config.hf_config,
method=self.method,
model_type="eagle")
self.draft_model_config.hf_config = eagle_config
if (self.num_speculative_tokens is not None
and hasattr(self.draft_model_config.hf_config,
"num_lookahead_tokens")):
self.draft_model_config.hf_config.num_lookahead_tokens = \
self.num_speculative_tokens
n_predict = getattr(self.draft_model_config.hf_config, "n_predict",
None)
if n_predict is not None:
if self.num_speculative_tokens is None:
# Default to max value defined in draft model config.
self.num_speculative_tokens = n_predict
elif self.num_speculative_tokens > n_predict and \
self.num_speculative_tokens % n_predict != 0:
# Ensure divisibility for MTP module reuse.
raise ValueError(
f"num_speculative_tokens:{self.num_speculative_tokens}"
f" must be divisible by {n_predict=}")
if self.speculative_token_tree is None:
# Generate chain of tokens.
self.speculative_token_tree = str([
(i + 1) * (0, ) for i in range(self.num_speculative_tokens)
])
else:
# Sort the token tree breadth-first.
tree_choices = ast.literal_eval(self.speculative_token_tree)
self.speculative_token_tree = str(
sorted(tree_choices, key=lambda t: (len(t), t)))
self.draft_tensor_parallel_size = \
SpeculativeConfig._verify_and_get_draft_tp(
self.target_parallel_config,
self.draft_tensor_parallel_size,
self.draft_model_config.hf_config
)
self.draft_model_config.max_model_len = (
SpeculativeConfig._maybe_override_draft_max_model_len(
self.max_model_len,
self.draft_model_config.max_model_len,
self.target_model_config.max_model_len,
))
self.draft_parallel_config = (
SpeculativeConfig.create_draft_parallel_config(
self.target_parallel_config,
self.draft_tensor_parallel_size))
SpeculativeConfig.__post_init__ = __post_init__