mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
384
vllm_npu/ops/sigmoid_gating.py
Normal file
384
vllm_npu/ops/sigmoid_gating.py
Normal file
@@ -0,0 +1,384 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# SPDX-FileCopyrightText: Songlin Yang, Yu Zhang
|
||||
#
|
||||
# This file contains code copied from the flash-linear-attention project.
|
||||
# The original source code was licensed under the MIT license and included
|
||||
# the following copyright notice:
|
||||
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
||||
# ruff: noqa: E501
|
||||
# mypy: ignore-errors
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from vllm.triton_utils import tl, tldevice, triton
|
||||
|
||||
if os.environ.get('FLA_USE_FAST_OPS', '0') == '1':
|
||||
div = tldevice.fast_dividef
|
||||
exp = tldevice.fast_expf
|
||||
log = tldevice.fast_logf
|
||||
log2 = tldevice.fast_log2f
|
||||
else:
|
||||
|
||||
@triton.jit
|
||||
def div_normal(x, y):
|
||||
return x / y
|
||||
|
||||
div = div_normal
|
||||
exp = tl.exp
|
||||
log = tl.log
|
||||
log2 = tl.log2
|
||||
|
||||
|
||||
@triton.heuristics({
|
||||
'USE_INITIAL_STATE':
|
||||
lambda args: args['h0'] is not None,
|
||||
'IS_VARLEN':
|
||||
lambda args: args['cu_seqlens'] is not None,
|
||||
"IS_CONTINUOUS_BATCHING":
|
||||
lambda args: args['ssm_state_indices'] is not None,
|
||||
"IS_SPEC_DECODING":
|
||||
lambda args: args['num_accepted_tokens'] is not None,
|
||||
})
|
||||
@triton.jit(do_not_specialize=['N', 'T'])
|
||||
def fused_recurrent_gated_delta_rule_fwd_kernel(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
g,
|
||||
beta,
|
||||
o,
|
||||
h0,
|
||||
ht,
|
||||
cu_seqlens,
|
||||
ssm_state_indices,
|
||||
num_accepted_tokens,
|
||||
scale,
|
||||
N: tl.constexpr, # num of sequences
|
||||
T: tl.constexpr, # num of tokens
|
||||
B: tl.constexpr,
|
||||
H: tl.constexpr,
|
||||
HV: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr,
|
||||
stride_init_state_token: tl.constexpr,
|
||||
stride_final_state_token: tl.constexpr,
|
||||
stride_indices_seq: tl.constexpr,
|
||||
stride_indices_tok: tl.constexpr,
|
||||
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
||||
INPLACE_FINAL_STATE: tl.constexpr, # whether to store final state inplace
|
||||
IS_BETA_HEADWISE: tl.
|
||||
constexpr, # whether beta is headwise vector or scalar,
|
||||
USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
|
||||
IS_VARLEN: tl.constexpr,
|
||||
IS_CONTINUOUS_BATCHING: tl.constexpr,
|
||||
IS_SPEC_DECODING: tl.constexpr,
|
||||
):
|
||||
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
i_n, i_hv = i_nh // HV, i_nh % HV
|
||||
i_h = i_hv // (HV // H)
|
||||
if IS_VARLEN:
|
||||
bos, eos = tl.load(cu_seqlens + i_n).to(
|
||||
tl.int64), tl.load(cu_seqlens + i_n + 1).to(tl.int64)
|
||||
all = T
|
||||
T = eos - bos
|
||||
else:
|
||||
bos, eos = i_n * T, i_n * T + T
|
||||
all = B * T
|
||||
|
||||
if T == 0:
|
||||
# no tokens to process for this sequence
|
||||
return
|
||||
|
||||
o_k = i_k * BK + tl.arange(0, BK)
|
||||
o_v = i_v * BV + tl.arange(0, BV)
|
||||
|
||||
mask_k = o_k < K
|
||||
mask_v = o_v < V
|
||||
mask_h = mask_k[:, None] & mask_v[None, :]
|
||||
|
||||
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
if USE_INITIAL_STATE:
|
||||
if IS_CONTINUOUS_BATCHING:
|
||||
if IS_SPEC_DECODING:
|
||||
i_t = tl.load(num_accepted_tokens + i_n).to(tl.int64) - 1
|
||||
else:
|
||||
i_t = 0
|
||||
p_h0 = h0 + tl.load(ssm_state_indices + i_n * stride_indices_seq +
|
||||
i_t).to(tl.int64) * stride_init_state_token
|
||||
else:
|
||||
p_h0 = h0 + bos * HV * K * V
|
||||
p_h0 = p_h0 + i_hv * K * V + o_k[:, None] * V + o_v[None, :]
|
||||
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
||||
|
||||
for i_t in range(0, T):
|
||||
p_q = q + (bos * H + i_h) * K + o_k + H * K * i_t
|
||||
p_k = k + (bos * H + i_h) * K + o_k + H * K * i_t
|
||||
p_v = v + (bos * HV + i_hv) * V + o_v + HV * V * i_t
|
||||
if IS_BETA_HEADWISE:
|
||||
p_beta = beta + (bos * HV + i_hv) * V + o_v + HV * V * i_t
|
||||
else:
|
||||
p_beta = beta + bos * HV + i_hv + HV * i_t
|
||||
p_g = g + bos * HV + i_hv + HV * i_t
|
||||
p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v + HV * V * i_t
|
||||
|
||||
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
|
||||
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
||||
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
||||
b_g = tl.load(p_g).to(tl.float32)
|
||||
|
||||
if USE_QK_L2NORM_IN_KERNEL:
|
||||
b_q = b_q / tl.sqrt(tl.sum(b_q * b_q) + 1e-6)
|
||||
b_k = b_k / tl.sqrt(tl.sum(b_k * b_k) + 1e-6)
|
||||
b_q = b_q * scale
|
||||
# [BK, BV]
|
||||
# b_h *= tl.exp(b_g)
|
||||
b_h *= exp(b_g)
|
||||
# [BV]
|
||||
b_v -= tl.sum(b_h * b_k[:, None], 0)
|
||||
if IS_BETA_HEADWISE:
|
||||
b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32)
|
||||
else:
|
||||
b_beta = tl.load(p_beta).to(tl.float32)
|
||||
b_v *= b_beta
|
||||
# [BK, BV]
|
||||
b_h += b_k[:, None] * b_v[None, :]
|
||||
# [BV]
|
||||
b_o = tl.sum(b_h * b_q[:, None], 0)
|
||||
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
||||
|
||||
# keep the states for multi-query tokens
|
||||
if INPLACE_FINAL_STATE:
|
||||
p_ht = ht + tl.load(ssm_state_indices + i_n * stride_indices_seq +
|
||||
i_t).to(tl.int64) * stride_final_state_token
|
||||
else:
|
||||
p_ht = ht + (bos + i_t) * stride_final_state_token
|
||||
p_ht = p_ht + i_hv * K * V + o_k[:, None] * V + o_v[None, :]
|
||||
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
||||
|
||||
|
||||
def fused_recurrent_gated_delta_rule_fwd(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
g: torch.Tensor,
|
||||
beta: torch.Tensor,
|
||||
scale: float,
|
||||
initial_state: torch.Tensor,
|
||||
inplace_final_state: bool = True,
|
||||
cu_seqlens: Optional[torch.LongTensor] = None,
|
||||
ssm_state_indices: Optional[torch.Tensor] = None,
|
||||
num_accepted_tokens: Optional[torch.Tensor] = None,
|
||||
use_qk_l2norm_in_kernel: bool = False,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
B, T, H, K, V = *k.shape, v.shape[-1]
|
||||
HV = v.shape[2]
|
||||
N = B if cu_seqlens is None else len(cu_seqlens) - 1
|
||||
BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
|
||||
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
||||
assert NK == 1, "NK > 1 is not supported yet"
|
||||
num_stages = 3
|
||||
num_warps = 1
|
||||
|
||||
o = q.new_empty(NK, *v.shape)
|
||||
if inplace_final_state:
|
||||
final_state = initial_state
|
||||
else:
|
||||
final_state = q.new_empty(T, HV, K, V, dtype=initial_state.dtype)
|
||||
|
||||
stride_init_state_token = initial_state.stride(0)
|
||||
stride_final_state_token = final_state.stride(0)
|
||||
|
||||
if ssm_state_indices is None:
|
||||
stride_indices_seq, stride_indices_tok = 1, 1
|
||||
elif ssm_state_indices.ndim == 1:
|
||||
stride_indices_seq, stride_indices_tok = ssm_state_indices.stride(0), 1
|
||||
else:
|
||||
stride_indices_seq, stride_indices_tok = ssm_state_indices.stride()
|
||||
|
||||
# print("N: ", N)
|
||||
# print("T: ", T)
|
||||
# print("B: ", B)
|
||||
# print("H: ", H)
|
||||
# print("HV: ", HV)
|
||||
# print("K: ", K)
|
||||
# print("V: ", V)
|
||||
# print("BK: ", BK)
|
||||
# print("BV: ", BV)
|
||||
|
||||
grid = (NK, NV, N * HV)
|
||||
fused_recurrent_gated_delta_rule_fwd_kernel[grid](
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
g=g,
|
||||
beta=beta,
|
||||
o=o,
|
||||
h0=initial_state,
|
||||
ht=final_state,
|
||||
cu_seqlens=cu_seqlens,
|
||||
ssm_state_indices=ssm_state_indices,
|
||||
num_accepted_tokens=num_accepted_tokens,
|
||||
scale=scale,
|
||||
N=N,
|
||||
T=T,
|
||||
B=B,
|
||||
H=H,
|
||||
HV=HV,
|
||||
K=K,
|
||||
V=V,
|
||||
BK=BK,
|
||||
BV=BV,
|
||||
stride_init_state_token=stride_init_state_token,
|
||||
stride_final_state_token=stride_final_state_token,
|
||||
stride_indices_seq=stride_indices_seq,
|
||||
stride_indices_tok=stride_indices_tok,
|
||||
IS_BETA_HEADWISE=beta.ndim == v.ndim,
|
||||
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
|
||||
INPLACE_FINAL_STATE=inplace_final_state,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages,
|
||||
)
|
||||
o = o.squeeze(0)
|
||||
return o, final_state
|
||||
|
||||
|
||||
class FusedRecurrentFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx,
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
g: torch.Tensor,
|
||||
beta: torch.Tensor,
|
||||
scale: float,
|
||||
initial_state: torch.Tensor,
|
||||
inplace_final_state: bool = True,
|
||||
cu_seqlens: Optional[torch.LongTensor] = None,
|
||||
ssm_state_indices: Optional[torch.Tensor] = None,
|
||||
num_accepted_tokens: Optional[torch.Tensor] = None,
|
||||
use_qk_l2norm_in_kernel: bool = False):
|
||||
o, final_state = fused_recurrent_gated_delta_rule_fwd(
|
||||
q=q.contiguous(),
|
||||
k=k.contiguous(),
|
||||
v=v.contiguous(),
|
||||
g=g.contiguous(),
|
||||
beta=beta.contiguous(),
|
||||
scale=scale,
|
||||
initial_state=initial_state,
|
||||
inplace_final_state=inplace_final_state,
|
||||
cu_seqlens=cu_seqlens,
|
||||
ssm_state_indices=ssm_state_indices,
|
||||
num_accepted_tokens=num_accepted_tokens,
|
||||
use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel,
|
||||
)
|
||||
|
||||
return o, final_state
|
||||
|
||||
|
||||
def fused_recurrent_gated_delta_rule(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
g: torch.Tensor,
|
||||
beta: torch.Tensor = None,
|
||||
scale: float = None,
|
||||
initial_state: torch.Tensor = None,
|
||||
inplace_final_state: bool = True,
|
||||
cu_seqlens: Optional[torch.LongTensor] = None,
|
||||
ssm_state_indices: Optional[torch.Tensor] = None,
|
||||
num_accepted_tokens: Optional[torch.Tensor] = None,
|
||||
use_qk_l2norm_in_kernel: bool = False,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
r"""
|
||||
Args:
|
||||
q (torch.Tensor):
|
||||
queries of shape `[B, T, H, K]`.
|
||||
k (torch.Tensor):
|
||||
keys of shape `[B, T, H, K]`.
|
||||
v (torch.Tensor):
|
||||
values of shape `[B, T, HV, V]`.
|
||||
GVA is applied if `HV > H`.
|
||||
g (torch.Tensor):
|
||||
g (decays) of shape `[B, T, HV]`.
|
||||
beta (torch.Tensor):
|
||||
betas of shape `[B, T, HV]`.
|
||||
scale (Optional[int]):
|
||||
Scale factor for the RetNet attention scores.
|
||||
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
||||
initial_state (Optional[torch.Tensor]):
|
||||
Initial state of shape `[N, HV, K, V]` for `N` input sequences.
|
||||
For equal-length input sequences, `N` equals the batch size `B`.
|
||||
Default: `None`.
|
||||
inplace_final_state: bool:
|
||||
Whether to store the final state in-place to save memory.
|
||||
Default: `True`.
|
||||
cu_seqlens (torch.LongTensor):
|
||||
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
||||
consistent with the FlashAttention API.
|
||||
ssm_state_indices (Optional[torch.Tensor]):
|
||||
Indices to map the input sequences to the initial/final states.
|
||||
num_accepted_tokens (Optional[torch.Tensor]):
|
||||
Number of accepted tokens for each sequence during decoding.
|
||||
Returns:
|
||||
o (torch.Tensor):
|
||||
Outputs of shape `[B, T, HV, V]`.
|
||||
final_state (torch.Tensor):
|
||||
Final state of shape `[N, HV, K, V]`.
|
||||
Examples::
|
||||
>>> import torch
|
||||
>>> import torch.nn.functional as F
|
||||
>>> from einops import rearrange
|
||||
>>> from fla.ops.gated_delta_rule import fused_recurrent_gated_delta_rule
|
||||
# inputs with equal lengths
|
||||
>>> B, T, H, HV, K, V = 4, 2048, 4, 8, 512, 512
|
||||
>>> q = torch.randn(B, T, H, K, device='cuda')
|
||||
>>> k = F.normalize(torch.randn(B, T, H, K, device='cuda'), p=2, dim=-1)
|
||||
>>> v = torch.randn(B, T, HV, V, device='cuda')
|
||||
>>> g = F.logsigmoid(torch.rand(B, T, HV, device='cuda'))
|
||||
>>> beta = torch.rand(B, T, HV, device='cuda').sigmoid()
|
||||
>>> h0 = torch.randn(B, HV, K, V, device='cuda')
|
||||
>>> o, ht = fused_gated_recurrent_delta_rule(
|
||||
q, k, v, g, beta,
|
||||
initial_state=h0,
|
||||
)
|
||||
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
||||
>>> q, k, v, g, beta = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g, beta))
|
||||
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
||||
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
||||
>>> o_var, ht_var = fused_gated_recurrent_delta_rule(
|
||||
q, k, v, g, beta,
|
||||
initial_state=h0,
|
||||
cu_seqlens=cu_seqlens
|
||||
)
|
||||
"""
|
||||
if cu_seqlens is not None and q.shape[0] != 1:
|
||||
raise ValueError(
|
||||
f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
||||
f"Please flatten variable-length inputs before processing.")
|
||||
if scale is None:
|
||||
scale = k.shape[-1]**-0.5
|
||||
else:
|
||||
assert scale > 0, "scale must be positive"
|
||||
if beta is None:
|
||||
beta = torch.ones_like(q[..., 0])
|
||||
o, final_state = FusedRecurrentFunction.apply(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
g,
|
||||
beta,
|
||||
scale,
|
||||
initial_state,
|
||||
inplace_final_state,
|
||||
cu_seqlens,
|
||||
ssm_state_indices,
|
||||
num_accepted_tokens,
|
||||
use_qk_l2norm_in_kernel,
|
||||
)
|
||||
return o, final_state
|
||||
Reference in New Issue
Block a user