This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

266
vllm_npu/ops/moe/moe_mlp.py Normal file
View File

@@ -0,0 +1,266 @@
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
from typing import Optional
import torch
import torch_npu
from torch.nn.functional import pad
from vllm.forward_context import get_forward_context
from vllm_npu.ascend_forward_context import MoECommType
from vllm_npu.utils import dispose_tensor, is_310p
def cumsum_group_list(group_list: torch.Tensor,
src_list_type: int,
dst_list_type: int,
active_num: int = 0,
expert_num: int = 0) -> torch.Tensor:
if src_list_type not in [0, 1, 2]:
raise ValueError(
f"group_list_type should be in [0, 1, 2], but received {src_list_type}"
)
if src_list_type == dst_list_type:
return group_list
if src_list_type == 1 and dst_list_type == 0:
return group_list.cumsum(dim=0)
if src_list_type == 0 and dst_list_type == 1:
group_diff = torch.diff(group_list)
new_group = torch.cat([group_list[0].unsqueeze(0), group_diff], dim=0)
return new_group
if src_list_type == 2 and dst_list_type == 0:
experts = pad(group_list[:, 0], (1, 0))
tokens = pad(group_list[:, 1].cumsum(dim=0), (1, 0))
cumsum_group_list = torch.full(size=(expert_num, ),
fill_value=active_num,
dtype=group_list.dtype,
device=group_list.device)
for i, (start, end) in enumerate(zip(experts[:-1], experts[1:])):
if end > start:
cumsum_group_list[start:end] = tokens[i]
return cumsum_group_list
raise NotImplementedError(
f"Conversion from src_list_type={src_list_type} to dst_list_type={dst_list_type} is not implemented yet. "
"This feature is under development.")
def quant_apply_mlp(hidden_states: torch.Tensor,
w1: torch.Tensor,
w1_scale: torch.Tensor,
w2: torch.Tensor,
w2_scale: torch.Tensor,
group_list: torch.Tensor,
group_list_type: int = 1,
dynamic_scale: torch.Tensor = None,
w1_scale_bias: torch.Tensor = None,
w2_scale_bias: torch.Tensor = None,
fusion: bool = False,
dynamic_eplb: bool = False) -> torch.Tensor:
if dynamic_scale is None:
unquantized_hidden_states = hidden_states
hidden_states, pertoken_scale = torch_npu.npu_dynamic_quant(
hidden_states)
# Dispose the original unquantized hidden states
# to save npu memory because they're no longer used.
dispose_tensor(unquantized_hidden_states)
else:
pertoken_scale = dynamic_scale
bias1, bias2 = None, None
_output_dtype = w2_scale.dtype
weight_prefetch_method = get_forward_context().weight_prefetch_method
if weight_prefetch_method:
weight_prefetch_method.maybe_prefetch_moe_weight_postprocess(
hidden_states)
is_mc2 = get_forward_context().moe_comm_type == MoECommType.MC2
if w1_scale_bias is None and is_mc2:
if fusion and not dynamic_eplb:
# gmm1: gate_up_proj & act_fn: swiglu
hidden_states, swiglu_out_scale, _ = torch_npu.npu_grouped_matmul_swiglu_quant(
x=hidden_states,
weight=w1,
group_list=cumsum_group_list(group_list, group_list_type, 0),
weight_scale=w1_scale,
x_scale=pertoken_scale)
else:
if w1_scale.dtype != torch.float32:
w1_scale = w1_scale.to(torch.float32)
# gmm1: gate_up_proj
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
split_item=3,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
output_dtype=torch.int32)[0]
# act_fn: swiglu
hidden_states, swiglu_out_scale = torch_npu.npu_dequant_swiglu_quant(
x=hidden_states,
weight_scale=w1_scale,
activation_scale=pertoken_scale,
bias=None,
quant_scale=None,
quant_offset=None,
group_index=cumsum_group_list(group_list, group_list_type, 1),
activate_left=True,
quant_mode=1,
)
# gmm2: down_proj
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w2],
scale=[w2_scale],
per_token_scale=[swiglu_out_scale],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
output_dtype=w2_scale.dtype)[0]
else:
if w1_scale_bias is not None:
if group_list_type == 0:
group_list = torch.cat(
[group_list[:1],
torch.diff(group_list, dim=0)])
group_list_type = 1
bias1 = [w1_scale_bias] if not fusion else w1_scale_bias
bias2 = [w2_scale_bias]
# TODO w4a8 scene: dynamic acquisition of dtype in the future
_output_dtype = torch.bfloat16
if fusion and not dynamic_eplb:
# gmm1: gate_up_proj & act_fn: swiglu
hidden_states, swiglu_out_scale, _ = torch_npu.npu_grouped_matmul_swiglu_quant(
x=hidden_states,
weight=w1,
bias=bias1,
group_list=cumsum_group_list(group_list, group_list_type, 0),
weight_scale=w1_scale,
x_scale=pertoken_scale)
else:
# gmm1: gate_up_proj
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
scale=[w1_scale.to(w2_scale.dtype)],
bias=bias1,
per_token_scale=[pertoken_scale],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
output_dtype=_output_dtype)[0]
# act_fn: swiglu
hidden_states = torch_npu.npu_swiglu(hidden_states)
hidden_states, swiglu_out_scale = torch_npu.npu_dynamic_quant(
hidden_states)
# gmm2: down_proj
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w2],
scale=[w2_scale],
bias=bias2,
per_token_scale=[swiglu_out_scale],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
output_dtype=_output_dtype)[0]
return hidden_states
def unquant_apply_mlp(hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
group_list: torch.Tensor,
group_list_type: int = 1,
topk_scales: Optional[torch.Tensor] = None,
need_trans: bool = True) -> torch.Tensor:
if need_trans:
w1 = w1.transpose(1, 2)
w2 = w2.transpose(1, 2)
gate_up_out = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
)[0]
if is_310p():
gate_up_out = torch_npu.npu_swiglu(gate_up_out.to(torch.float32)).to(
torch.float16)
else:
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
if topk_scales is not None:
gate_up_out *= topk_scales
hidden_states = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
)[0]
return hidden_states
def unified_apply_mlp(hidden_states: torch.Tensor,
w1: torch.Tensor,
w1_scale: torch.Tensor,
w2: torch.Tensor,
w2_scale: torch.Tensor,
group_list: torch.Tensor,
dynamic_scale: torch.Tensor = None,
group_list_type: int = 1,
w1_scale_bias: torch.Tensor = None,
w2_scale_bias: torch.Tensor = None,
topk_scales: Optional[torch.Tensor] = None,
with_quant: bool = False,
fusion: bool = False,
need_trans: bool = True,
dynamic_eplb: bool = False) -> torch.Tensor:
if with_quant:
return quant_apply_mlp(hidden_states=hidden_states,
w1=w1,
w1_scale=w1_scale,
w2=w2,
w2_scale=w2_scale,
group_list=group_list,
dynamic_scale=dynamic_scale,
group_list_type=group_list_type,
w1_scale_bias=w1_scale_bias,
w2_scale_bias=w2_scale_bias,
fusion=fusion,
dynamic_eplb=dynamic_eplb)
else:
return unquant_apply_mlp(hidden_states=hidden_states,
w1=w1,
w2=w2,
group_list=group_list,
group_list_type=group_list_type,
topk_scales=topk_scales,
need_trans=need_trans)