mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
466
vllm_npu/ops/linear.py
Normal file
466
vllm_npu/ops/linear.py
Normal file
@@ -0,0 +1,466 @@
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
To customize linear communication groups or forward of classes in this file,
|
||||
extend new linear operations in linear_op.py.
|
||||
The classes in this file should not be modified, including AscendQKVParallelLinear,
|
||||
AscendMergedColumnParallelLinear, AscendMergedColumnParallelLinear,
|
||||
AscendRowParallelLinear and AscendColumnParallelLinear.
|
||||
"""
|
||||
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch_npu
|
||||
from torch.nn.parameter import Parameter
|
||||
from vllm.config import get_current_vllm_config
|
||||
from vllm.distributed import divide
|
||||
from vllm.model_executor.layers.linear import ( # noqa
|
||||
WEIGHT_LOADER_V2_SUPPORTED, ColumnParallelLinear, LinearBase,
|
||||
MergedColumnParallelLinear, QKVParallelLinear, QuantizeMethodBase,
|
||||
ReplicatedLinear, RowParallelLinear, UnquantizedLinearMethod)
|
||||
from vllm.model_executor.layers.quantization.base_config import \
|
||||
QuantizationConfig
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
|
||||
from vllm_npu.ops.linear_op import get_parallel_op, get_replicated_op
|
||||
from vllm_npu.utils import ACL_FORMAT_FRACTAL_NZ, is_enable_nz
|
||||
|
||||
|
||||
class AscendUnquantizedLinearMethod(UnquantizedLinearMethod):
|
||||
"""Linear method without quantization"""
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
super().process_weights_after_loading(layer)
|
||||
if (is_enable_nz(layer.weight.data.dtype)):
|
||||
layer.weight.data = torch_npu.npu_format_cast(
|
||||
layer.weight.data, ACL_FORMAT_FRACTAL_NZ)
|
||||
|
||||
|
||||
# TODO(realliujiaxu): Remove this class after linear of vllm supports custom comm group
|
||||
class AscendLinearBase(LinearBase):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
|
||||
# Keep input parameters
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.skip_bias_add = skip_bias_add
|
||||
if params_dtype is None:
|
||||
params_dtype = torch.get_default_dtype()
|
||||
self.params_dtype = params_dtype
|
||||
self.quant_config = quant_config
|
||||
self.prefix = prefix
|
||||
if quant_config is None:
|
||||
self.quant_method: Optional[
|
||||
QuantizeMethodBase] = AscendUnquantizedLinearMethod()
|
||||
else:
|
||||
self.quant_method = quant_config.get_quant_method(self,
|
||||
prefix=prefix)
|
||||
self.return_bias = return_bias
|
||||
self.disable_tp = disable_tp
|
||||
|
||||
|
||||
class AscendQKVParallelLinear(QKVParallelLinear):
|
||||
"""Linear layers for the attention's QKV transformation.
|
||||
|
||||
Linear layers for the linear transformation of the query, key, and value
|
||||
vectors in the attention layer. The weight matrix is concatenated along
|
||||
the output dimension. The layer is parallelized along the head dimension.
|
||||
When the number of key/value heads is smaller than the number of query
|
||||
heads (e.g., multi-query/grouped-query attention), the key/value head may
|
||||
be replicated while the query heads are partitioned.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
head_size: int,
|
||||
total_num_heads: int,
|
||||
total_num_kv_heads: Optional[int] = None,
|
||||
bias: bool = True,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
self.custom_op, _, tp_size = get_parallel_op(disable_tp, prefix, self,
|
||||
"column")
|
||||
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
|
||||
self.hidden_size = hidden_size
|
||||
self.head_size = head_size
|
||||
self.total_num_heads = total_num_heads
|
||||
if total_num_kv_heads is None:
|
||||
total_num_kv_heads = total_num_heads
|
||||
self.total_num_kv_heads = total_num_kv_heads
|
||||
# Divide the weight matrix along the last dimension.
|
||||
self.num_heads = divide(self.total_num_heads, tp_size)
|
||||
if tp_size >= self.total_num_kv_heads:
|
||||
self.num_kv_heads = 1
|
||||
self.num_kv_head_replicas = divide(tp_size,
|
||||
self.total_num_kv_heads)
|
||||
else:
|
||||
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
||||
self.num_kv_head_replicas = 1
|
||||
input_size = self.hidden_size
|
||||
output_size = (self.num_heads +
|
||||
2 * self.num_kv_heads) * tp_size * self.head_size
|
||||
self.output_sizes = [
|
||||
self.num_heads * self.head_size * tp_size, # q_proj
|
||||
self.num_kv_heads * self.head_size * tp_size, # k_proj
|
||||
self.num_kv_heads * self.head_size * tp_size, # v_proj
|
||||
]
|
||||
AscendColumnParallelLinear.__init__(self,
|
||||
input_size=input_size,
|
||||
output_size=output_size,
|
||||
bias=bias,
|
||||
gather_output=False,
|
||||
skip_bias_add=skip_bias_add,
|
||||
params_dtype=params_dtype,
|
||||
quant_config=quant_config,
|
||||
prefix=prefix,
|
||||
return_bias=return_bias,
|
||||
disable_tp=disable_tp)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
||||
if self.custom_op is not None:
|
||||
return self.custom_op.apply(input_)
|
||||
|
||||
return super().forward(input_)
|
||||
|
||||
|
||||
class AscendMergedColumnParallelLinear(MergedColumnParallelLinear):
|
||||
"""Packed linear layers with column parallelism.
|
||||
|
||||
Similar to ColumnParallelLinear, but the weight matrix is concatenated
|
||||
along the output dimension. When the weight matrix is loaded, the
|
||||
different partitions are sharded separately.
|
||||
|
||||
Use the MLP tensor parallelism group in the MLP module,
|
||||
and the original TP group in other modules.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_sizes: list[int],
|
||||
bias: bool = True,
|
||||
gather_output: bool = False,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
self.custom_op, self.tp_rank, self.tp_size = get_parallel_op(
|
||||
disable_tp, prefix, self, "column")
|
||||
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
|
||||
self.output_sizes = output_sizes
|
||||
assert all(output_size % self.tp_size == 0
|
||||
for output_size in output_sizes)
|
||||
AscendColumnParallelLinear.__init__(self,
|
||||
input_size=input_size,
|
||||
output_size=sum(output_sizes),
|
||||
bias=bias,
|
||||
gather_output=gather_output,
|
||||
skip_bias_add=skip_bias_add,
|
||||
params_dtype=params_dtype,
|
||||
quant_config=quant_config,
|
||||
prefix=prefix,
|
||||
return_bias=return_bias,
|
||||
disable_tp=disable_tp)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
||||
if self.custom_op is not None:
|
||||
return self.custom_op.apply(input_)
|
||||
|
||||
return super().forward(input_)
|
||||
|
||||
|
||||
class AscendRowParallelLinear(RowParallelLinear):
|
||||
"""Linear layer with row parallelism.
|
||||
Use the MLP tensor parallelism group in the MLP module,
|
||||
and the original TP group in other modules.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
bias: bool = True,
|
||||
input_is_parallel: bool = True,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
reduce_results: bool = True,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
compilation_config = get_current_vllm_config().compilation_config
|
||||
# TODO(shaopeng-666): Remove the visual check after the mm model reconstruction is complete.
|
||||
# TODO(MengqingCao): Remove the empty string check, after specifying the prefix in linear layers of some models in the vLLM.
|
||||
if prefix in compilation_config.static_forward_context and \
|
||||
prefix != "" and \
|
||||
"visual" not in prefix:
|
||||
raise ValueError(f"Duplicate layer name: {prefix}")
|
||||
compilation_config.static_forward_context[prefix] = self
|
||||
|
||||
self.custom_op, self.tp_rank, self.tp_size = get_parallel_op(
|
||||
disable_tp, prefix, self, "row")
|
||||
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
|
||||
# Divide the weight matrix along the first dimension.
|
||||
self.input_size_per_partition = divide(input_size, self.tp_size)
|
||||
self.output_size_per_partition = output_size
|
||||
self.output_partition_sizes = [output_size]
|
||||
|
||||
AscendLinearBase.__init__(self,
|
||||
input_size,
|
||||
output_size,
|
||||
skip_bias_add,
|
||||
params_dtype,
|
||||
quant_config,
|
||||
prefix,
|
||||
return_bias=return_bias,
|
||||
disable_tp=disable_tp)
|
||||
|
||||
self.input_is_parallel = input_is_parallel
|
||||
self.reduce_results = reduce_results
|
||||
|
||||
assert self.quant_method is not None
|
||||
self.quant_method.create_weights(
|
||||
layer=self,
|
||||
input_size_per_partition=self.input_size_per_partition,
|
||||
output_partition_sizes=self.output_partition_sizes,
|
||||
input_size=self.input_size,
|
||||
output_size=self.output_size,
|
||||
params_dtype=self.params_dtype,
|
||||
weight_loader=(
|
||||
self.weight_loader_v2 if self.quant_method.__class__.__name__
|
||||
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
|
||||
if not reduce_results and (bias and not skip_bias_add):
|
||||
raise ValueError("When not reduce the results, adding bias to the "
|
||||
"results can lead to incorrect results")
|
||||
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.empty(self.output_size, dtype=params_dtype))
|
||||
set_weight_attrs(self.bias, {
|
||||
"output_dim": 0,
|
||||
"weight_loader": self.weight_loader,
|
||||
})
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
if self.custom_op is not None:
|
||||
self.custom_op.update_attrs()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_,
|
||||
is_prefill: bool = True,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
||||
if self.custom_op is not None:
|
||||
return self.custom_op.apply(input_)
|
||||
|
||||
return super().forward(input_)
|
||||
|
||||
|
||||
class AscendColumnParallelLinear(ColumnParallelLinear):
|
||||
"""Linear layer with column parallelism.
|
||||
|
||||
Use the MLP tensor parallelism group in the MLP module,
|
||||
and the original TP group in other modules.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
bias: bool = True,
|
||||
gather_output: bool = False,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
output_sizes: Optional[list[int]] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
self.custom_op, self.tp_rank, self.tp_size = get_parallel_op(
|
||||
disable_tp, prefix, self, "column")
|
||||
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
|
||||
self.input_size_per_partition = input_size
|
||||
self.output_size_per_partition = divide(output_size, self.tp_size)
|
||||
self.output_partition_sizes = [self.output_size_per_partition]
|
||||
# If QKV or MergedColumn, use output size of each partition.
|
||||
if hasattr(self, "output_sizes"):
|
||||
self.output_partition_sizes = [
|
||||
divide(output_size, self.tp_size)
|
||||
for output_size in self.output_sizes
|
||||
]
|
||||
|
||||
AscendLinearBase.__init__(self,
|
||||
input_size,
|
||||
output_size,
|
||||
skip_bias_add,
|
||||
params_dtype,
|
||||
quant_config,
|
||||
prefix,
|
||||
return_bias=return_bias,
|
||||
disable_tp=disable_tp)
|
||||
|
||||
self.gather_output = gather_output
|
||||
|
||||
if output_sizes is None:
|
||||
output_sizes = [output_size]
|
||||
|
||||
assert self.quant_method is not None
|
||||
self.quant_method.create_weights(
|
||||
layer=self,
|
||||
input_size_per_partition=self.input_size_per_partition,
|
||||
output_partition_sizes=self.output_partition_sizes,
|
||||
input_size=self.input_size,
|
||||
output_size=self.output_size,
|
||||
params_dtype=self.params_dtype,
|
||||
weight_loader=(
|
||||
self.weight_loader_v2 if self.quant_method.__class__.__name__
|
||||
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.empty(self.output_size_per_partition,
|
||||
dtype=params_dtype))
|
||||
set_weight_attrs(self.bias, {
|
||||
"output_dim": 0,
|
||||
"weight_loader": self.weight_loader,
|
||||
})
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
if self.custom_op is not None:
|
||||
self.custom_op.update_attrs()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
||||
if self.custom_op is not None:
|
||||
return self.custom_op.apply(input_)
|
||||
|
||||
return super().forward(input_)
|
||||
|
||||
|
||||
class AscendReplicatedLinear(ReplicatedLinear):
|
||||
"""Ascend Replicated linear layer.
|
||||
|
||||
Args:
|
||||
input_size: input dimension of the linear layer.
|
||||
output_size: output dimension of the linear layer.
|
||||
bias: If true, add bias.
|
||||
skip_bias_add: If true, skip adding bias but instead return it.
|
||||
params_dtype: Data type for the parameters.
|
||||
quant_config: Quantization configure.
|
||||
prefix: The name of the layer in the state dict, including all parents
|
||||
(e.g. model.layers.0.qkv_proj)
|
||||
return_bias: If true, return bias together with outputs in forward pass.
|
||||
disable_tp: Take no effect for replicated linear layers.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
bias: bool = True,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
self.custom_op = get_replicated_op(disable_tp, prefix, self)
|
||||
# If MergedReplicatedLinear, use output size of each partition.
|
||||
if hasattr(self, "output_sizes"):
|
||||
self.output_partition_sizes = self.output_sizes
|
||||
else:
|
||||
self.output_partition_sizes = [output_size]
|
||||
|
||||
AscendLinearBase.__init__(self,
|
||||
input_size,
|
||||
output_size,
|
||||
skip_bias_add,
|
||||
params_dtype,
|
||||
quant_config,
|
||||
prefix=prefix,
|
||||
return_bias=return_bias,
|
||||
disable_tp=disable_tp)
|
||||
|
||||
# All the linear layer supports quant method.
|
||||
assert self.quant_method is not None
|
||||
self.quant_method.create_weights(self,
|
||||
self.input_size, [self.output_size],
|
||||
self.input_size,
|
||||
self.output_size,
|
||||
self.params_dtype,
|
||||
weight_loader=self.weight_loader)
|
||||
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.empty(self.output_size, dtype=self.params_dtype))
|
||||
set_weight_attrs(self.bias, {
|
||||
"output_dim": 0,
|
||||
"weight_loader": self.weight_loader,
|
||||
})
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
if self.custom_op is not None:
|
||||
self.custom_op.update_attrs()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
|
||||
if self.custom_op is not None:
|
||||
return self.custom_op.apply(input_)
|
||||
|
||||
return super().forward(input_)
|
||||
Reference in New Issue
Block a user