This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -1,36 +1,213 @@
"""
NPU-optimized layer normalization for Ascend.
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
Provides ``AscendRMSNorm`` — a proper ``RMSNorm`` subclass with
``forward_oot()`` so that vLLM's ``CustomOp`` dispatch can route
to NPU kernels automatically.
"""
from typing import Optional, Tuple, Union
from typing import Optional, Tuple, Union, cast
import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.config import get_current_vllm_config
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.layernorm import GemmaRMSNorm, RMSNorm
def _addrmsnorm_forward_oot(
self,
x: torch.Tensor,
residual: torch.Tensor,
layer: Optional[torch.nn.Module] = None,
bias: Optional[torch.nn.Parameter] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
import torch_npu
from vllm_npu.utils import is_310p
if layer is not None and not is_310p():
layer_cls_name = layer.__class__.__name__
try:
weight_prefetch_method = get_forward_context(
).weight_prefetch_method
except AssertionError:
weight_prefetch_method = None
# prefetch qkvo_proj.weight preprocess
if weight_prefetch_method:
weight_prefetch_method.maybe_prefetch_attn_weight_preprocess(
layer_cls_name=layer_cls_name,
weight=layer.weight,
start_flag=x,
)
# add_rms_norm_quant
x, _, residual = torch_npu.npu_add_rms_norm_quant(
x,
residual,
self.weight,
layer.aclnn_input_scale,
layer.aclnn_input_offset,
beta=bias,
epsilon=self.variance_epsilon)
# prefetch qkvo_proj.weight postprocess
if weight_prefetch_method:
weight_prefetch_method.maybe_prefetch_attn_weight_postprocess(
layer_cls_name=layer_cls_name,
stop_flag=x,
)
else:
if is_310p():
orig_dtype = residual.dtype
x = x + residual.to(x.dtype)
residual = x.to(orig_dtype)
x, _ = torch_npu.npu_rms_norm(x, self.weight,
self.variance_epsilon)
else:
x, _, residual = torch_npu.npu_add_rms_norm(
x, residual, self.weight, self.variance_epsilon)
if bias is not None:
x.add_(bias)
torch.ops.vllm.maybe_wait_prefetch_done(x)
return x, residual
class AscendRMSNorm(RMSNorm):
"""RMSNorm using Ascend NPU fused kernels.
Uses ``torch_npu.npu_rms_norm`` for standalone normalization and
``torch_npu.npu_add_rms_norm`` for fused residual-add + norm.
"""
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
var_hidden_size: Optional[int] = None,
has_weight: bool = True,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__(hidden_size, eps, var_hidden_size, has_weight, dtype)
vllm_config = get_current_vllm_config()
self.bias = None
# quantization with anti_method m4 will generate none-zero norm bias
if vllm_config.quant_config is not None and \
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
requires_grad=False)
def forward_oot(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
import torch_npu # noqa: F401
import torch_npu
if residual is not None:
x, _, residual = torch_npu.npu_add_rms_norm(
x, residual, self.weight, self.variance_epsilon
)
assert x.size(0) == residual.size(0)
x, residual = _addrmsnorm_forward_oot(
self, x, residual, self.next_need_quant_fusion_linear,
self.bias)
return x, residual
x, residual = torch_npu.npu_rms_norm(x, self.weight,
self.variance_epsilon)
if self.bias is not None:
x.add_(self.bias)
return x
@property
def next_need_quant_fusion_linear(self):
try:
forward_context = get_forward_context()
if not forward_context.addrmsnorm_quant_fusion_enabled or \
forward_context.layer_idx == forward_context.num_hidden_layers:
return None
except AssertionError:
return None
next_linear = None
model_instance = forward_context.model_instance
layer_idx = forward_context.layer_idx
fusion_linear = forward_context.fusion_linear
next_linear = None
if fusion_linear == "qkv_dense":
next_linear = model_instance.model.layers[
layer_idx].self_attn.qkv_proj
forward_context.fusion_linear = "gate_up_dense"
elif fusion_linear == "gate_up_dense":
next_linear = model_instance.model.layers[
layer_idx].mlp.gate_up_proj
forward_context.fusion_linear = "qkv_dense"
# if prefetch_mlp_weight enabled, following accumulation operation
# does not need to be repeated
if not forward_context.prefetch_mlp_enabled:
forward_context.layer_idx += 1
elif fusion_linear == "qkv_moe":
next_linear = model_instance.model.layers[
layer_idx].self_attn.qkv_proj
forward_context.fusion_linear = "gate_moe"
elif fusion_linear == "gate_moe":
forward_context.fusion_linear = "qkv_moe"
forward_context.layer_idx += 1
from vllm_npu.quantization.w8a8 import AscendW8A8LinearMethod
if next_linear is not None and \
not isinstance(next_linear.quant_method.quant_method, AscendW8A8LinearMethod):
next_linear = None
return next_linear
class AscendQuantRMSNorm(AscendRMSNorm):
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
var_hidden_size: Optional[int] = None,
has_weight: bool = True,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__(hidden_size, eps, var_hidden_size, has_weight, dtype)
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
requires_grad=False)
def forward_oot(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
if residual is not None:
x, residual = super().forward_oot(x, residual)
return x.add_(self.bias), residual
return cast(torch.Tensor, super().forward_oot(x)).add_(self.bias)
class AscendGemmaRMSNorm(GemmaRMSNorm):
def forward_oot(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
import torch_npu
from vllm_npu.utils import is_310p
if residual is not None:
if is_310p():
orig_dtype = residual.dtype
x = x + residual.to(x.dtype)
residual = x.to(orig_dtype)
x, _ = torch_npu.npu_rms_norm(x, 1.0 + self.weight,
self.variance_epsilon)
else:
x, _, residual = torch_npu.npu_add_rms_norm(
x, residual, 1.0 + self.weight, self.variance_epsilon)
return x, residual
x, _ = torch_npu.npu_rms_norm(x, self.weight, self.variance_epsilon)
x, _ = torch_npu.npu_rms_norm(x, 1.0 + self.weight,
self.variance_epsilon)
return x