This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -0,0 +1,676 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# mypy: ignore-errors
"""Inference-only Qwen3Next model."""
from collections.abc import Iterable
from typing import Optional
import torch
from einops import rearrange
from torch import nn
from transformers.activations import ACT2FN
from vllm import envs
from vllm.attention import AttentionBackend, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CacheConfig, ModelConfig, SpeculativeConfig,
VllmConfig, get_current_vllm_config)
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.fla.ops import RMSNormGated
from vllm.model_executor.layers.fla.ops.chunk import chunk_gated_delta_rule
from vllm.model_executor.layers.fla.ops.fused_recurrent import \
fused_recurrent_gated_delta_rule
from vllm.model_executor.layers.fused_moe import FusedMoE
# yapf conflicts with isort for this block
# yapf: disable
from vllm.model_executor.layers.layernorm import \
GemmaRMSNorm as Qwen3NextRMSNorm
# yapf: enable
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.abstract import MambaBase
from vllm.model_executor.layers.mamba.mamba_mixer2 import \
mamba_v2_sharded_weight_loader
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator, MambaStateShapeCalculator)
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, sharded_weight_loader)
from vllm.model_executor.models.qwen2_moe import Qwen2MoeMLP as Qwen3NextMLP
from vllm.model_executor.models.utils import (
PPMissingLayer, extract_layer_index, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
from vllm.model_executor.utils import set_weight_attrs
from vllm.transformers_utils.configs import Qwen3NextConfig
from vllm.v1.attention.backends.gdn_attn import GDNAttentionMetadata
from vllm.model_executor.models.qwen3_next import ( # isort: skip
Qwen3NextAttention, Qwen3NextDecoderLayer, Qwen3NextForCausalLM,
Qwen3NextGatedDeltaNet, Qwen3NextModel, Qwen3NextSparseMoeBlock,
fused_gdn_gating)
class CustomQwen3NextGatedDeltaNet(Qwen3NextGatedDeltaNet, MambaBase):
@property
def mamba_type(self) -> str:
return "linear_attention"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.gdn_attn import GDNAttentionBackend
return GDNAttentionBackend
def get_state_dtype(self) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.gated_delta_net_state_dtype(
self.model_config.dtype, self.cache_config.mamba_cache_dtype)
def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
return MambaStateShapeCalculator.gated_delta_net_state_shape(
self.tp_size, self.num_k_heads, self.num_v_heads, self.head_k_dim,
self.head_v_dim, self.conv_kernel_size, self.num_spec)
def __init__(
self,
config: Qwen3NextConfig,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
speculative_config: Optional[SpeculativeConfig] = None,
prefix: str = "",
) -> None:
nn.Module.__init__(self)
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
self.hidden_size = config.hidden_size
self.num_v_heads = config.linear_num_value_heads
self.num_k_heads = config.linear_num_key_heads
self.head_k_dim = config.linear_key_head_dim
self.head_v_dim = config.linear_value_head_dim
self.key_dim = self.head_k_dim * self.num_k_heads
self.value_dim = self.head_v_dim * self.num_v_heads
self.conv_kernel_size = config.linear_conv_kernel_dim
self.layer_idx = extract_layer_index(prefix)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.layer_norm_epsilon = config.rms_norm_eps
self.prefix = prefix
self.config = config
self.model_config = model_config
self.cache_config = cache_config
self.quant_config = quant_config
self.speculative_config = speculative_config
self.num_spec = (self.speculative_config.num_speculative_tokens
if self.speculative_config else 0)
# QKV
self.conv_dim = self.key_dim * 2 + self.value_dim
self.conv1d = ColumnParallelLinear(
input_size=self.conv_kernel_size,
output_size=self.conv_dim,
bias=False,
prefix=f"{prefix}.conv1d",
)
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
# projection of the input hidden states
self.projection_size_qkvz = self.key_dim * 2 + self.value_dim * 2
self.projection_size_ba = self.num_v_heads * 2
self.in_proj = MergedColumnParallelLinear(
input_size=self.hidden_size,
output_sizes=[self.projection_size_qkvz, self.projection_size_ba],
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.in_proj",
)
query_key_settings = (self.key_dim, 0, False)
value_settings = (self.value_dim, 0, False)
delattr(self.conv1d.weight, "weight_loader")
set_weight_attrs(
self.conv1d.weight, {
"weight_loader":
mamba_v2_sharded_weight_loader([
query_key_settings,
query_key_settings,
value_settings,
], self.tp_size, self.tp_rank)
})
# selective projection used to make dt, B and C input dependent
# time step projection (discretization)
# instantiate once and copy inv_dt in init_weights of PretrainedModel
self.dt_bias = nn.Parameter(
torch.ones(self.num_v_heads // self.tp_size), )
self.A_log = nn.Parameter(
torch.empty(
divide(self.num_v_heads, self.tp_size),
dtype=torch.float32,
))
set_weight_attrs(self.A_log,
{"weight_loader": sharded_weight_loader(0)})
set_weight_attrs(self.dt_bias,
{"weight_loader": sharded_weight_loader(0)})
self.norm = RMSNormGated(
self.head_v_dim,
eps=self.layer_norm_epsilon,
norm_before_gate=True,
device="npu",
)
self.out_proj = RowParallelLinear(self.value_dim,
self.hidden_size,
bias=False,
input_is_parallel=True,
quant_config=quant_config,
prefix=f"{prefix}.out_proj")
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
compilation_config.static_forward_context[prefix] = self
def _forward(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
):
forward_context = get_forward_context()
attn_metadata: AttentionMetadata = forward_context.attn_metadata
if attn_metadata is None:
# V1 profile run
return
assert isinstance(attn_metadata, dict)
attn_metadata = attn_metadata[self.prefix]
assert isinstance(attn_metadata, GDNAttentionMetadata)
has_initial_state = attn_metadata.has_initial_state
spec_query_start_loc = attn_metadata.spec_query_start_loc
non_spec_query_start_loc = attn_metadata.non_spec_query_start_loc
spec_sequence_masks = attn_metadata.spec_sequence_masks
spec_token_masks = attn_metadata.spec_token_masks
spec_state_indices_tensor = attn_metadata.spec_state_indices_tensor # noqa: E501
non_spec_state_indices_tensor = attn_metadata.non_spec_state_indices_tensor # noqa: E501
self_kv_cache = self.kv_cache[forward_context.virtual_engine]
conv_state = self_kv_cache[0].transpose(-1, -2)
ssm_state = self_kv_cache[1]
num_actual_tokens = (attn_metadata.num_prefill_tokens +
attn_metadata.num_decode_tokens +
attn_metadata.num_spec_decode_tokens)
num_accepted_tokens = attn_metadata.num_accepted_tokens
# 1. Set up dimensions for reshapes later
projected_states, _ = self.in_proj(hidden_states[:num_actual_tokens])
if spec_token_masks is not None:
spec_token_masks = spec_token_masks[:num_actual_tokens]
projected_states_qkvz, projected_states_ba = torch.split(
projected_states,
[
self.projection_size_qkvz // self.tp_size,
self.projection_size_ba // self.tp_size
],
dim=-1,
)
query, key, value, z, b, a = self.fix_query_key_value_ordering(
projected_states_qkvz, projected_states_ba)
query, key, value = map(lambda x: rearrange(x, 'l p d -> l (p d)'),
(query, key, value))
mixed_qkv = torch.cat((query, key, value), dim=-1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0),
self.conv1d.weight.size(2))
if spec_sequence_masks is not None:
if (attn_metadata.num_prefills == 0
and attn_metadata.num_decodes == 0):
mixed_qkv_spec = mixed_qkv
mixed_qkv_non_spec = None
else:
mixed_qkv_spec = mixed_qkv[spec_token_masks]
mixed_qkv_non_spec = mixed_qkv[~spec_token_masks]
else:
mixed_qkv_spec = None
mixed_qkv_non_spec = mixed_qkv
# 2.2: process the remaining part
if attn_metadata.num_prefills > 0:
# - "cache_indices" updates the conv_state cache in positions
# pointed to by "mamba_cache_params.state_indices_tensor"
mixed_qkv_non_spec = causal_conv1d_fn(
mixed_qkv_non_spec.transpose(0, 1),
conv_weights,
self.conv1d.bias,
activation=self.activation,
conv_states=conv_state,
has_initial_state=has_initial_state,
cache_indices=non_spec_state_indices_tensor,
query_start_loc=non_spec_query_start_loc,
).transpose(0, 1)
elif attn_metadata.num_decodes > 0:
mixed_qkv_non_spec = causal_conv1d_update(
mixed_qkv_non_spec,
conv_state,
conv_weights,
self.conv1d.bias,
self.activation,
conv_state_indices=non_spec_state_indices_tensor[:attn_metadata
.num_decodes],
# validate_data=True,
)
else:
mixed_qkv_non_spec = None
query_spec, key_spec, value_spec = self.rearrange_mixed_qkv(
mixed_qkv_spec)
query_non_spec, key_non_spec, value_non_spec = self.rearrange_mixed_qkv(
mixed_qkv_non_spec)
beta = b.sigmoid()
g = fused_gdn_gating(self.A_log, a, self.dt_bias)
g, beta = map(lambda x: rearrange(x, 'l d -> 1 l d'), (g, beta))
if spec_sequence_masks is not None:
if (attn_metadata.num_prefills == 0
and attn_metadata.num_decodes == 0):
g_spec = g
beta_spec = beta
g_non_spec = None
beta_non_spec = None
else:
g_spec = g[:, spec_token_masks]
beta_spec = beta[:, spec_token_masks]
g_non_spec = g[:, ~spec_token_masks]
beta_non_spec = beta[:, ~spec_token_masks]
else:
g_spec = None
beta_spec = None
g_non_spec = g
beta_non_spec = beta
# 3. Recurrent attention
# 3.1: process the mutlti-query part
if spec_sequence_masks is not None:
core_attn_out_spec, last_recurrent_state = (
fused_recurrent_gated_delta_rule(
q=query_spec,
k=key_spec,
v=value_spec,
g=g_spec,
beta=beta_spec,
initial_state=ssm_state,
inplace_final_state=True,
cu_seqlens=spec_query_start_loc[:attn_metadata.
num_spec_decodes + 1],
ssm_state_indices=spec_state_indices_tensor,
num_accepted_tokens=num_accepted_tokens,
use_qk_l2norm_in_kernel=True,
))
else:
core_attn_out_spec, last_recurrent_state = None, None
# 3.2: process the remaining part
if attn_metadata.num_prefills > 0:
initial_state = ssm_state[
non_spec_state_indices_tensor].contiguous()
initial_state[~has_initial_state, ...] = 0
batch_size = initial_state.shape[0]
core_attn_out = []
last_recurrent_state = []
for b_idx in range(batch_size):
start, end = non_spec_query_start_loc[
b_idx], non_spec_query_start_loc[b_idx + 1]
cur_q = query_non_spec[:, start:end, ...]
cur_k = key_non_spec[:, start:end, ...]
cur_v = value_non_spec[:, start:end, ...]
cur_g = g_non_spec[:, start:end, ...]
cur_b = beta_non_spec[:, start:end, ...]
cur_state = initial_state[b_idx].unsqueeze(0)
(
cur_core_attn_out_non_spec,
cur_last_recurrent_state,
) = chunk_gated_delta_rule(
query=cur_q,
key=cur_k,
value=cur_v,
g=cur_g,
beta=cur_b,
initial_state=cur_state,
output_final_state=True,
use_qk_l2norm_in_kernel=True,
)
core_attn_out.append(cur_core_attn_out_non_spec)
last_recurrent_state.append(cur_last_recurrent_state)
tar_dtype = core_attn_out[0].dtype
tar_device = core_attn_out[0].device
tar_shape = list(core_attn_out[0].shape)
tar_shape[1] = non_spec_query_start_loc[-1]
core_attn_out_non_spec = torch.empty(tar_shape,
dtype=tar_dtype,
device=tar_device)
for b_idx in range(batch_size):
cur_core_attn_out = core_attn_out[b_idx]
start, end = non_spec_query_start_loc[
b_idx], non_spec_query_start_loc[b_idx + 1]
core_attn_out_non_spec[:, start:end, ...] = cur_core_attn_out
last_recurrent_state = torch.cat(last_recurrent_state, dim=0)
# Init cache
ssm_state[non_spec_state_indices_tensor] = last_recurrent_state.to(
ssm_state.dtype)
elif attn_metadata.num_decodes > 0:
core_attn_out_non_spec, last_recurrent_state = (
fused_recurrent_gated_delta_rule(
q=query_non_spec,
k=key_non_spec,
v=value_non_spec,
g=g_non_spec,
beta=beta_non_spec,
initial_state=ssm_state,
inplace_final_state=True,
cu_seqlens=non_spec_query_start_loc[:attn_metadata.
num_decodes + 1],
ssm_state_indices=non_spec_state_indices_tensor,
use_qk_l2norm_in_kernel=True,
))
else:
core_attn_out_non_spec, last_recurrent_state = None, None
# Merge core attention output
if (spec_sequence_masks is not None
and core_attn_out_non_spec is not None):
core_attn_out = torch.empty(
(1, num_actual_tokens, *core_attn_out_spec.shape[2:]),
dtype=core_attn_out_non_spec.dtype,
device=core_attn_out_non_spec.device,
)
core_attn_out[:, spec_token_masks] = core_attn_out_spec
core_attn_out[:, ~spec_token_masks] = core_attn_out_non_spec
elif spec_sequence_masks is not None:
core_attn_out = core_attn_out_spec
else:
core_attn_out = core_attn_out_non_spec
z_shape_og = z.shape
# reshape input data into 2D tensor
core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
z = z.reshape(-1, z.shape[-1])
core_attn_out = self.norm(core_attn_out, z)
core_attn_out = core_attn_out.reshape(z_shape_og)
core_attn_out = rearrange(core_attn_out, '... h d -> ... (h d)')
output[:num_actual_tokens], _ = self.out_proj(core_attn_out)
class CustomQwen3NextDecoderLayer(Qwen3NextDecoderLayer):
def __init__(
self,
vllm_config: VllmConfig,
layer_type: str,
prefix: str = "",
) -> None:
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
speculative_config = vllm_config.speculative_config
self.layer_type = layer_type
self.layer_idx = extract_layer_index(prefix)
if self.layer_type == "linear_attention":
self.linear_attn = CustomQwen3NextGatedDeltaNet(
config,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
speculative_config=speculative_config,
prefix=f'{prefix}.linear_attn')
elif self.layer_type == "full_attention":
self.self_attn = Qwen3NextAttention(
config,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f'{prefix}.self_attn',
)
else:
raise ValueError(f"Invalid layer_type {self.layer_type}")
mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
config.mlp_only_layers)
if (self.layer_idx not in mlp_only_layers) and (
config.num_experts > 0 and
(self.layer_idx + 1) % config.decoder_sparse_step == 0):
self.mlp = Qwen3NextSparseMoeBlock(vllm_config=vllm_config,
prefix=f"{prefix}.mlp")
else:
self.mlp = Qwen3NextMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
)
self.input_layernorm = Qwen3NextRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen3NextRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
self.layer_scale = getattr(config, "layer_scale", False)
if self.layer_scale:
self.attn_layer_scale = torch.nn.Parameter(
torch.zeros(
1,
1,
config.hidden_size,
dtype=config.torch_dtype,
), )
self.ffn_layer_scale = torch.nn.Parameter(
torch.zeros(
1,
1,
config.hidden_size,
dtype=config.torch_dtype,
), )
@support_torch_compile
class CustomQwen3NextModel(Qwen3NextModel):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
config: Qwen3NextConfig = vllm_config.model_config.hf_config
parallel_config = vllm_config.parallel_config
lora_config = vllm_config.lora_config
eplb_config = parallel_config.eplb_config
self.num_redundant_experts = eplb_config.num_redundant_experts
self.config = config
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
def get_layer(prefix: str):
return CustomQwen3NextDecoderLayer(
vllm_config,
layer_type=config.layer_types[extract_layer_index(prefix)],
prefix=prefix,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
self.norm = Qwen3NextRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
("in_proj", "in_proj_qkvz", 0),
("in_proj", "in_proj_ba", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if name.startswith("mtp."):
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# name = apply_attn_prefix(name, params_dict)
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Skip loading extra bias for GPTQ models.
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class CustomQwen3NextForCausalLM(Qwen3NextForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, \
"Qwen3Next currently does not support prefix caching"
assert envs.VLLM_USE_V1, "Qwen3Next requires VLLM_USE_V1"
self.quant_config = vllm_config.quant_config
self.config = config
self.scheduler_config = scheduler_config
self.model = CustomQwen3NextModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
# Set MoE hyperparameters
self.expert_weights = []
self.moe_layers: list[FusedMoE] = []
example_layer = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(layer, Qwen3NextDecoderLayer)
if isinstance(layer.mlp, Qwen3NextSparseMoeBlock):
example_layer = layer.mlp
self.moe_layers.append(layer.mlp.experts)
if example_layer is None:
raise RuntimeError("No Qwen3Next layer found in the model.layers.")
self.num_moe_layers = len(self.moe_layers)
self.num_expert_groups = 1
self.num_shared_experts = 0
self.num_logical_experts = example_layer.n_logical_experts
self.num_physical_experts = example_layer.n_physical_experts
self.num_local_physical_experts = example_layer.n_local_physical_experts
self.num_routed_experts = example_layer.n_routed_experts
self.num_redundant_experts = example_layer.n_redundant_experts