mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
676
vllm_npu/models/qwen3_next.py
Normal file
676
vllm_npu/models/qwen3_next.py
Normal file
@@ -0,0 +1,676 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# mypy: ignore-errors
|
||||
"""Inference-only Qwen3Next model."""
|
||||
from collections.abc import Iterable
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from vllm import envs
|
||||
from vllm.attention import AttentionBackend, AttentionMetadata
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import (CacheConfig, ModelConfig, SpeculativeConfig,
|
||||
VllmConfig, get_current_vllm_config)
|
||||
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.forward_context import get_forward_context
|
||||
from vllm.model_executor.layers.fla.ops import RMSNormGated
|
||||
from vllm.model_executor.layers.fla.ops.chunk import chunk_gated_delta_rule
|
||||
from vllm.model_executor.layers.fla.ops.fused_recurrent import \
|
||||
fused_recurrent_gated_delta_rule
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm.model_executor.layers.layernorm import \
|
||||
GemmaRMSNorm as Qwen3NextRMSNorm
|
||||
# yapf: enable
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.mamba.abstract import MambaBase
|
||||
from vllm.model_executor.layers.mamba.mamba_mixer2 import \
|
||||
mamba_v2_sharded_weight_loader
|
||||
from vllm.model_executor.layers.mamba.mamba_utils import (
|
||||
MambaStateDtypeCalculator, MambaStateShapeCalculator)
|
||||
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
|
||||
causal_conv1d_fn, causal_conv1d_update)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, sharded_weight_loader)
|
||||
from vllm.model_executor.models.qwen2_moe import Qwen2MoeMLP as Qwen3NextMLP
|
||||
from vllm.model_executor.models.utils import (
|
||||
PPMissingLayer, extract_layer_index, is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.transformers_utils.configs import Qwen3NextConfig
|
||||
from vllm.v1.attention.backends.gdn_attn import GDNAttentionMetadata
|
||||
|
||||
from vllm.model_executor.models.qwen3_next import ( # isort: skip
|
||||
Qwen3NextAttention, Qwen3NextDecoderLayer, Qwen3NextForCausalLM,
|
||||
Qwen3NextGatedDeltaNet, Qwen3NextModel, Qwen3NextSparseMoeBlock,
|
||||
fused_gdn_gating)
|
||||
|
||||
|
||||
class CustomQwen3NextGatedDeltaNet(Qwen3NextGatedDeltaNet, MambaBase):
|
||||
|
||||
@property
|
||||
def mamba_type(self) -> str:
|
||||
return "linear_attention"
|
||||
|
||||
def get_attn_backend(self) -> type["AttentionBackend"]:
|
||||
from vllm.v1.attention.backends.gdn_attn import GDNAttentionBackend
|
||||
return GDNAttentionBackend
|
||||
|
||||
def get_state_dtype(self) -> tuple[torch.dtype, torch.dtype]:
|
||||
return MambaStateDtypeCalculator.gated_delta_net_state_dtype(
|
||||
self.model_config.dtype, self.cache_config.mamba_cache_dtype)
|
||||
|
||||
def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
|
||||
return MambaStateShapeCalculator.gated_delta_net_state_shape(
|
||||
self.tp_size, self.num_k_heads, self.num_v_heads, self.head_k_dim,
|
||||
self.head_v_dim, self.conv_kernel_size, self.num_spec)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Qwen3NextConfig,
|
||||
model_config: Optional[ModelConfig] = None,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
speculative_config: Optional[SpeculativeConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.tp_rank = get_tensor_model_parallel_rank()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_v_heads = config.linear_num_value_heads
|
||||
self.num_k_heads = config.linear_num_key_heads
|
||||
self.head_k_dim = config.linear_key_head_dim
|
||||
self.head_v_dim = config.linear_value_head_dim
|
||||
self.key_dim = self.head_k_dim * self.num_k_heads
|
||||
self.value_dim = self.head_v_dim * self.num_v_heads
|
||||
|
||||
self.conv_kernel_size = config.linear_conv_kernel_dim
|
||||
self.layer_idx = extract_layer_index(prefix)
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
self.layer_norm_epsilon = config.rms_norm_eps
|
||||
self.prefix = prefix
|
||||
|
||||
self.config = config
|
||||
self.model_config = model_config
|
||||
self.cache_config = cache_config
|
||||
self.quant_config = quant_config
|
||||
self.speculative_config = speculative_config
|
||||
self.num_spec = (self.speculative_config.num_speculative_tokens
|
||||
if self.speculative_config else 0)
|
||||
|
||||
# QKV
|
||||
self.conv_dim = self.key_dim * 2 + self.value_dim
|
||||
self.conv1d = ColumnParallelLinear(
|
||||
input_size=self.conv_kernel_size,
|
||||
output_size=self.conv_dim,
|
||||
bias=False,
|
||||
prefix=f"{prefix}.conv1d",
|
||||
)
|
||||
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
|
||||
|
||||
# projection of the input hidden states
|
||||
self.projection_size_qkvz = self.key_dim * 2 + self.value_dim * 2
|
||||
self.projection_size_ba = self.num_v_heads * 2
|
||||
self.in_proj = MergedColumnParallelLinear(
|
||||
input_size=self.hidden_size,
|
||||
output_sizes=[self.projection_size_qkvz, self.projection_size_ba],
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.in_proj",
|
||||
)
|
||||
|
||||
query_key_settings = (self.key_dim, 0, False)
|
||||
value_settings = (self.value_dim, 0, False)
|
||||
|
||||
delattr(self.conv1d.weight, "weight_loader")
|
||||
set_weight_attrs(
|
||||
self.conv1d.weight, {
|
||||
"weight_loader":
|
||||
mamba_v2_sharded_weight_loader([
|
||||
query_key_settings,
|
||||
query_key_settings,
|
||||
value_settings,
|
||||
], self.tp_size, self.tp_rank)
|
||||
})
|
||||
|
||||
# selective projection used to make dt, B and C input dependent
|
||||
|
||||
# time step projection (discretization)
|
||||
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
||||
self.dt_bias = nn.Parameter(
|
||||
torch.ones(self.num_v_heads // self.tp_size), )
|
||||
self.A_log = nn.Parameter(
|
||||
torch.empty(
|
||||
divide(self.num_v_heads, self.tp_size),
|
||||
dtype=torch.float32,
|
||||
))
|
||||
|
||||
set_weight_attrs(self.A_log,
|
||||
{"weight_loader": sharded_weight_loader(0)})
|
||||
set_weight_attrs(self.dt_bias,
|
||||
{"weight_loader": sharded_weight_loader(0)})
|
||||
|
||||
self.norm = RMSNormGated(
|
||||
self.head_v_dim,
|
||||
eps=self.layer_norm_epsilon,
|
||||
norm_before_gate=True,
|
||||
device="npu",
|
||||
)
|
||||
|
||||
self.out_proj = RowParallelLinear(self.value_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
input_is_parallel=True,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.out_proj")
|
||||
|
||||
compilation_config = get_current_vllm_config().compilation_config
|
||||
if prefix in compilation_config.static_forward_context:
|
||||
raise ValueError(f"Duplicate layer name: {prefix}")
|
||||
compilation_config.static_forward_context[prefix] = self
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
):
|
||||
forward_context = get_forward_context()
|
||||
attn_metadata: AttentionMetadata = forward_context.attn_metadata
|
||||
|
||||
if attn_metadata is None:
|
||||
# V1 profile run
|
||||
return
|
||||
|
||||
assert isinstance(attn_metadata, dict)
|
||||
attn_metadata = attn_metadata[self.prefix]
|
||||
assert isinstance(attn_metadata, GDNAttentionMetadata)
|
||||
has_initial_state = attn_metadata.has_initial_state
|
||||
spec_query_start_loc = attn_metadata.spec_query_start_loc
|
||||
non_spec_query_start_loc = attn_metadata.non_spec_query_start_loc
|
||||
spec_sequence_masks = attn_metadata.spec_sequence_masks
|
||||
spec_token_masks = attn_metadata.spec_token_masks
|
||||
spec_state_indices_tensor = attn_metadata.spec_state_indices_tensor # noqa: E501
|
||||
non_spec_state_indices_tensor = attn_metadata.non_spec_state_indices_tensor # noqa: E501
|
||||
self_kv_cache = self.kv_cache[forward_context.virtual_engine]
|
||||
|
||||
conv_state = self_kv_cache[0].transpose(-1, -2)
|
||||
ssm_state = self_kv_cache[1]
|
||||
|
||||
num_actual_tokens = (attn_metadata.num_prefill_tokens +
|
||||
attn_metadata.num_decode_tokens +
|
||||
attn_metadata.num_spec_decode_tokens)
|
||||
num_accepted_tokens = attn_metadata.num_accepted_tokens
|
||||
|
||||
# 1. Set up dimensions for reshapes later
|
||||
projected_states, _ = self.in_proj(hidden_states[:num_actual_tokens])
|
||||
if spec_token_masks is not None:
|
||||
spec_token_masks = spec_token_masks[:num_actual_tokens]
|
||||
projected_states_qkvz, projected_states_ba = torch.split(
|
||||
projected_states,
|
||||
[
|
||||
self.projection_size_qkvz // self.tp_size,
|
||||
self.projection_size_ba // self.tp_size
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
query, key, value, z, b, a = self.fix_query_key_value_ordering(
|
||||
projected_states_qkvz, projected_states_ba)
|
||||
query, key, value = map(lambda x: rearrange(x, 'l p d -> l (p d)'),
|
||||
(query, key, value))
|
||||
mixed_qkv = torch.cat((query, key, value), dim=-1)
|
||||
|
||||
# 2. Convolution sequence transformation
|
||||
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0),
|
||||
self.conv1d.weight.size(2))
|
||||
|
||||
if spec_sequence_masks is not None:
|
||||
if (attn_metadata.num_prefills == 0
|
||||
and attn_metadata.num_decodes == 0):
|
||||
mixed_qkv_spec = mixed_qkv
|
||||
mixed_qkv_non_spec = None
|
||||
else:
|
||||
mixed_qkv_spec = mixed_qkv[spec_token_masks]
|
||||
mixed_qkv_non_spec = mixed_qkv[~spec_token_masks]
|
||||
else:
|
||||
mixed_qkv_spec = None
|
||||
mixed_qkv_non_spec = mixed_qkv
|
||||
|
||||
# 2.2: process the remaining part
|
||||
if attn_metadata.num_prefills > 0:
|
||||
# - "cache_indices" updates the conv_state cache in positions
|
||||
# pointed to by "mamba_cache_params.state_indices_tensor"
|
||||
mixed_qkv_non_spec = causal_conv1d_fn(
|
||||
mixed_qkv_non_spec.transpose(0, 1),
|
||||
conv_weights,
|
||||
self.conv1d.bias,
|
||||
activation=self.activation,
|
||||
conv_states=conv_state,
|
||||
has_initial_state=has_initial_state,
|
||||
cache_indices=non_spec_state_indices_tensor,
|
||||
query_start_loc=non_spec_query_start_loc,
|
||||
).transpose(0, 1)
|
||||
elif attn_metadata.num_decodes > 0:
|
||||
mixed_qkv_non_spec = causal_conv1d_update(
|
||||
mixed_qkv_non_spec,
|
||||
conv_state,
|
||||
conv_weights,
|
||||
self.conv1d.bias,
|
||||
self.activation,
|
||||
conv_state_indices=non_spec_state_indices_tensor[:attn_metadata
|
||||
.num_decodes],
|
||||
# validate_data=True,
|
||||
)
|
||||
else:
|
||||
mixed_qkv_non_spec = None
|
||||
|
||||
query_spec, key_spec, value_spec = self.rearrange_mixed_qkv(
|
||||
mixed_qkv_spec)
|
||||
query_non_spec, key_non_spec, value_non_spec = self.rearrange_mixed_qkv(
|
||||
mixed_qkv_non_spec)
|
||||
|
||||
beta = b.sigmoid()
|
||||
g = fused_gdn_gating(self.A_log, a, self.dt_bias)
|
||||
g, beta = map(lambda x: rearrange(x, 'l d -> 1 l d'), (g, beta))
|
||||
|
||||
if spec_sequence_masks is not None:
|
||||
if (attn_metadata.num_prefills == 0
|
||||
and attn_metadata.num_decodes == 0):
|
||||
g_spec = g
|
||||
beta_spec = beta
|
||||
g_non_spec = None
|
||||
beta_non_spec = None
|
||||
else:
|
||||
g_spec = g[:, spec_token_masks]
|
||||
beta_spec = beta[:, spec_token_masks]
|
||||
g_non_spec = g[:, ~spec_token_masks]
|
||||
beta_non_spec = beta[:, ~spec_token_masks]
|
||||
else:
|
||||
g_spec = None
|
||||
beta_spec = None
|
||||
g_non_spec = g
|
||||
beta_non_spec = beta
|
||||
|
||||
# 3. Recurrent attention
|
||||
# 3.1: process the mutlti-query part
|
||||
if spec_sequence_masks is not None:
|
||||
core_attn_out_spec, last_recurrent_state = (
|
||||
fused_recurrent_gated_delta_rule(
|
||||
q=query_spec,
|
||||
k=key_spec,
|
||||
v=value_spec,
|
||||
g=g_spec,
|
||||
beta=beta_spec,
|
||||
initial_state=ssm_state,
|
||||
inplace_final_state=True,
|
||||
cu_seqlens=spec_query_start_loc[:attn_metadata.
|
||||
num_spec_decodes + 1],
|
||||
ssm_state_indices=spec_state_indices_tensor,
|
||||
num_accepted_tokens=num_accepted_tokens,
|
||||
use_qk_l2norm_in_kernel=True,
|
||||
))
|
||||
else:
|
||||
core_attn_out_spec, last_recurrent_state = None, None
|
||||
|
||||
# 3.2: process the remaining part
|
||||
if attn_metadata.num_prefills > 0:
|
||||
initial_state = ssm_state[
|
||||
non_spec_state_indices_tensor].contiguous()
|
||||
initial_state[~has_initial_state, ...] = 0
|
||||
|
||||
batch_size = initial_state.shape[0]
|
||||
core_attn_out = []
|
||||
last_recurrent_state = []
|
||||
|
||||
for b_idx in range(batch_size):
|
||||
start, end = non_spec_query_start_loc[
|
||||
b_idx], non_spec_query_start_loc[b_idx + 1]
|
||||
cur_q = query_non_spec[:, start:end, ...]
|
||||
cur_k = key_non_spec[:, start:end, ...]
|
||||
cur_v = value_non_spec[:, start:end, ...]
|
||||
cur_g = g_non_spec[:, start:end, ...]
|
||||
cur_b = beta_non_spec[:, start:end, ...]
|
||||
cur_state = initial_state[b_idx].unsqueeze(0)
|
||||
|
||||
(
|
||||
cur_core_attn_out_non_spec,
|
||||
cur_last_recurrent_state,
|
||||
) = chunk_gated_delta_rule(
|
||||
query=cur_q,
|
||||
key=cur_k,
|
||||
value=cur_v,
|
||||
g=cur_g,
|
||||
beta=cur_b,
|
||||
initial_state=cur_state,
|
||||
output_final_state=True,
|
||||
use_qk_l2norm_in_kernel=True,
|
||||
)
|
||||
|
||||
core_attn_out.append(cur_core_attn_out_non_spec)
|
||||
last_recurrent_state.append(cur_last_recurrent_state)
|
||||
|
||||
tar_dtype = core_attn_out[0].dtype
|
||||
tar_device = core_attn_out[0].device
|
||||
tar_shape = list(core_attn_out[0].shape)
|
||||
tar_shape[1] = non_spec_query_start_loc[-1]
|
||||
core_attn_out_non_spec = torch.empty(tar_shape,
|
||||
dtype=tar_dtype,
|
||||
device=tar_device)
|
||||
for b_idx in range(batch_size):
|
||||
cur_core_attn_out = core_attn_out[b_idx]
|
||||
start, end = non_spec_query_start_loc[
|
||||
b_idx], non_spec_query_start_loc[b_idx + 1]
|
||||
core_attn_out_non_spec[:, start:end, ...] = cur_core_attn_out
|
||||
last_recurrent_state = torch.cat(last_recurrent_state, dim=0)
|
||||
|
||||
# Init cache
|
||||
ssm_state[non_spec_state_indices_tensor] = last_recurrent_state.to(
|
||||
ssm_state.dtype)
|
||||
elif attn_metadata.num_decodes > 0:
|
||||
core_attn_out_non_spec, last_recurrent_state = (
|
||||
fused_recurrent_gated_delta_rule(
|
||||
q=query_non_spec,
|
||||
k=key_non_spec,
|
||||
v=value_non_spec,
|
||||
g=g_non_spec,
|
||||
beta=beta_non_spec,
|
||||
initial_state=ssm_state,
|
||||
inplace_final_state=True,
|
||||
cu_seqlens=non_spec_query_start_loc[:attn_metadata.
|
||||
num_decodes + 1],
|
||||
ssm_state_indices=non_spec_state_indices_tensor,
|
||||
use_qk_l2norm_in_kernel=True,
|
||||
))
|
||||
else:
|
||||
core_attn_out_non_spec, last_recurrent_state = None, None
|
||||
|
||||
# Merge core attention output
|
||||
if (spec_sequence_masks is not None
|
||||
and core_attn_out_non_spec is not None):
|
||||
core_attn_out = torch.empty(
|
||||
(1, num_actual_tokens, *core_attn_out_spec.shape[2:]),
|
||||
dtype=core_attn_out_non_spec.dtype,
|
||||
device=core_attn_out_non_spec.device,
|
||||
)
|
||||
core_attn_out[:, spec_token_masks] = core_attn_out_spec
|
||||
core_attn_out[:, ~spec_token_masks] = core_attn_out_non_spec
|
||||
elif spec_sequence_masks is not None:
|
||||
core_attn_out = core_attn_out_spec
|
||||
else:
|
||||
core_attn_out = core_attn_out_non_spec
|
||||
|
||||
z_shape_og = z.shape
|
||||
# reshape input data into 2D tensor
|
||||
core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
|
||||
z = z.reshape(-1, z.shape[-1])
|
||||
core_attn_out = self.norm(core_attn_out, z)
|
||||
core_attn_out = core_attn_out.reshape(z_shape_og)
|
||||
core_attn_out = rearrange(core_attn_out, '... h d -> ... (h d)')
|
||||
|
||||
output[:num_actual_tokens], _ = self.out_proj(core_attn_out)
|
||||
|
||||
|
||||
class CustomQwen3NextDecoderLayer(Qwen3NextDecoderLayer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vllm_config: VllmConfig,
|
||||
layer_type: str,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
model_config = vllm_config.model_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
speculative_config = vllm_config.speculative_config
|
||||
|
||||
self.layer_type = layer_type
|
||||
self.layer_idx = extract_layer_index(prefix)
|
||||
|
||||
if self.layer_type == "linear_attention":
|
||||
self.linear_attn = CustomQwen3NextGatedDeltaNet(
|
||||
config,
|
||||
model_config=model_config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
speculative_config=speculative_config,
|
||||
prefix=f'{prefix}.linear_attn')
|
||||
elif self.layer_type == "full_attention":
|
||||
self.self_attn = Qwen3NextAttention(
|
||||
config,
|
||||
model_config=model_config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f'{prefix}.self_attn',
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid layer_type {self.layer_type}")
|
||||
|
||||
mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
|
||||
config.mlp_only_layers)
|
||||
if (self.layer_idx not in mlp_only_layers) and (
|
||||
config.num_experts > 0 and
|
||||
(self.layer_idx + 1) % config.decoder_sparse_step == 0):
|
||||
self.mlp = Qwen3NextSparseMoeBlock(vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
else:
|
||||
self.mlp = Qwen3NextMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
self.input_layernorm = Qwen3NextRMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = Qwen3NextRMSNorm(
|
||||
config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.layer_scale = getattr(config, "layer_scale", False)
|
||||
if self.layer_scale:
|
||||
self.attn_layer_scale = torch.nn.Parameter(
|
||||
torch.zeros(
|
||||
1,
|
||||
1,
|
||||
config.hidden_size,
|
||||
dtype=config.torch_dtype,
|
||||
), )
|
||||
self.ffn_layer_scale = torch.nn.Parameter(
|
||||
torch.zeros(
|
||||
1,
|
||||
1,
|
||||
config.hidden_size,
|
||||
dtype=config.torch_dtype,
|
||||
), )
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class CustomQwen3NextModel(Qwen3NextModel):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config: Qwen3NextConfig = vllm_config.model_config.hf_config
|
||||
parallel_config = vllm_config.parallel_config
|
||||
lora_config = vllm_config.lora_config
|
||||
eplb_config = parallel_config.eplb_config
|
||||
self.num_redundant_experts = eplb_config.num_redundant_experts
|
||||
|
||||
self.config = config
|
||||
lora_vocab = ((lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0)
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
)
|
||||
|
||||
def get_layer(prefix: str):
|
||||
return CustomQwen3NextDecoderLayer(
|
||||
vllm_config,
|
||||
layer_type=config.layer_types[extract_layer_index(prefix)],
|
||||
prefix=prefix,
|
||||
)
|
||||
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
self.norm = Qwen3NextRMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
("in_proj", "in_proj_qkvz", 0),
|
||||
("in_proj", "in_proj_ba", 1),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
if name.startswith("mtp."):
|
||||
continue
|
||||
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
|
||||
if "mlp.experts" in name:
|
||||
continue
|
||||
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
# name = apply_attn_prefix(name, params_dict)
|
||||
if name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
|
||||
class CustomQwen3NextForCausalLM(Qwen3NextForCausalLM):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
self.vllm_config = vllm_config
|
||||
self.model_config = vllm_config.model_config
|
||||
cache_config = vllm_config.cache_config
|
||||
lora_config = vllm_config.lora_config
|
||||
scheduler_config = vllm_config.scheduler_config
|
||||
assert not cache_config.enable_prefix_caching, \
|
||||
"Qwen3Next currently does not support prefix caching"
|
||||
assert envs.VLLM_USE_V1, "Qwen3Next requires VLLM_USE_V1"
|
||||
self.quant_config = vllm_config.quant_config
|
||||
self.config = config
|
||||
self.scheduler_config = scheduler_config
|
||||
self.model = CustomQwen3NextModel(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
||||
# We need bigger padding if using lora for kernel
|
||||
# compatibility
|
||||
if not lora_config else lora_config.lora_vocab_padding_size,
|
||||
)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
# Set MoE hyperparameters
|
||||
self.expert_weights = []
|
||||
|
||||
self.moe_layers: list[FusedMoE] = []
|
||||
example_layer = None
|
||||
for layer in self.model.layers:
|
||||
if isinstance(layer, PPMissingLayer):
|
||||
continue
|
||||
|
||||
assert isinstance(layer, Qwen3NextDecoderLayer)
|
||||
if isinstance(layer.mlp, Qwen3NextSparseMoeBlock):
|
||||
example_layer = layer.mlp
|
||||
self.moe_layers.append(layer.mlp.experts)
|
||||
|
||||
if example_layer is None:
|
||||
raise RuntimeError("No Qwen3Next layer found in the model.layers.")
|
||||
|
||||
self.num_moe_layers = len(self.moe_layers)
|
||||
self.num_expert_groups = 1
|
||||
self.num_shared_experts = 0
|
||||
self.num_logical_experts = example_layer.n_logical_experts
|
||||
self.num_physical_experts = example_layer.n_physical_experts
|
||||
self.num_local_physical_experts = example_layer.n_local_physical_experts
|
||||
self.num_routed_experts = example_layer.n_routed_experts
|
||||
self.num_redundant_experts = example_layer.n_redundant_experts
|
||||
Reference in New Issue
Block a user