mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
369
vllm_npu/models/qwen2_vl.py
Normal file
369
vllm_npu/models/qwen2_vl.py
Normal file
@@ -0,0 +1,369 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2023 The vLLM team.
|
||||
#
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Adapted from vllm/model_executor/models/qwen2_vl.py
|
||||
# This file is a part of the vllm-ascend project.
|
||||
|
||||
from collections.abc import Iterable
|
||||
from functools import partial
|
||||
from typing import Callable, Optional, Set, Tuple, Type
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch_npu
|
||||
from einops import rearrange
|
||||
from transformers.models.qwen2_vl.configuration_qwen2_vl import \
|
||||
Qwen2VLVisionConfig
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.distributed import utils as dist_utils
|
||||
from vllm.model_executor.layers.activation import QuickGELU
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.qwen2_vl import (
|
||||
Qwen2VisionAttention, Qwen2VisionBlock, Qwen2VisionPatchEmbed,
|
||||
Qwen2VisionTransformer, Qwen2VLDummyInputsBuilder,
|
||||
Qwen2VLForConditionalGeneration, Qwen2VLMultiModalProcessor,
|
||||
Qwen2VLProcessingInfo)
|
||||
from vllm.model_executor.models.utils import maybe_prefix
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
|
||||
from vllm_npu.utils import ACL_FORMAT_FRACTAL_ND, is_enable_nz
|
||||
|
||||
MIN_PAD_SIZE = 64 # min_size to pad weight
|
||||
MAX_PAD_SIZE = 128 # max_size to pad weight
|
||||
|
||||
|
||||
class AscendQwen2VisionAttention(Qwen2VisionAttention):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
projection_size: int,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__(
|
||||
embed_dim,
|
||||
num_heads,
|
||||
projection_size,
|
||||
quant_config,
|
||||
prefix,
|
||||
)
|
||||
self.cu_seqlens = None
|
||||
self.hidden_size_per_attention_head = dist_utils.divide(
|
||||
projection_size, num_heads)
|
||||
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
|
||||
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
|
||||
self.hidden_size_per_attention_head = MAX_PAD_SIZE
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
|
||||
self.cu_seqlens = cu_seqlens
|
||||
|
||||
# [s, b, c] --> [s, b, 3 * head * head_dim]
|
||||
x, _ = self.qkv(x)
|
||||
|
||||
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
|
||||
q, k, v = self.split_qkv(x)
|
||||
batch_size = q.shape[1]
|
||||
|
||||
q, k, v = [
|
||||
rearrange(x, "s b ... -> b s ...").contiguous() for x in (q, k, v)
|
||||
]
|
||||
q = torch_npu.npu_rotary_mul(q, cos, sin)
|
||||
k = torch_npu.npu_rotary_mul(k, cos, sin)
|
||||
q, k, v = [
|
||||
rearrange(x, "b s h d -> (b s) h d").contiguous()
|
||||
for x in (q, k, v)
|
||||
]
|
||||
|
||||
context_layer = torch.empty_like(q)
|
||||
|
||||
# operator requires pta version >= 2.5.1
|
||||
torch_npu._npu_flash_attention_unpad(
|
||||
query=q,
|
||||
key=k,
|
||||
value=v,
|
||||
seq_len=self.cu_seqlens,
|
||||
scale_value=self.origin_hidden_size_per_attention_head**-0.5,
|
||||
num_heads=self.num_attention_heads_per_partition,
|
||||
num_kv_heads=self.num_attention_heads_per_partition,
|
||||
out=context_layer)
|
||||
context_layer = rearrange(context_layer,
|
||||
"(b s) h d -> s b (h d)",
|
||||
b=batch_size).contiguous()
|
||||
|
||||
output, _ = self.proj(context_layer)
|
||||
return output
|
||||
|
||||
|
||||
class AscendQwen2VisionBlock(Qwen2VisionBlock):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float,
|
||||
act_layer: Type[nn.Module] = QuickGELU,
|
||||
norm_layer: Optional[Callable[[int], nn.Module]] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__(dim, num_heads, mlp_ratio, act_layer, norm_layer,
|
||||
quant_config, prefix)
|
||||
self.attn = AscendQwen2VisionAttention(embed_dim=dim,
|
||||
num_heads=num_heads,
|
||||
projection_size=dim,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
x = x + self.attn(
|
||||
self.norm1(x),
|
||||
cu_seqlens=cu_seqlens,
|
||||
cos=cos,
|
||||
sin=sin,
|
||||
)
|
||||
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class AscendQwen2VisionPatchEmbed(Qwen2VisionPatchEmbed):
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = x.matmul(
|
||||
self.proj.weight.data.view(self.embed_dim, -1).transpose(0, 1))
|
||||
return x
|
||||
|
||||
|
||||
class AscendQwen2VisionTransformer(Qwen2VisionTransformer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vision_config: Qwen2VLVisionConfig,
|
||||
norm_eps: float = 1e-6,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
interleaved=False,
|
||||
) -> None:
|
||||
super().__init__(vision_config, norm_eps, quant_config, prefix)
|
||||
|
||||
self.interleaved = interleaved
|
||||
self.enable_pad = False
|
||||
self.depth = vision_config.depth
|
||||
self.hidden_size = vision_config.embed_dim
|
||||
self.num_heads = vision_config.num_heads
|
||||
self.patch_embed = AscendQwen2VisionPatchEmbed(
|
||||
patch_size=vision_config.patch_size,
|
||||
temporal_patch_size=vision_config.temporal_patch_size,
|
||||
in_channels=vision_config.in_channels,
|
||||
embed_dim=vision_config.embed_dim,
|
||||
)
|
||||
|
||||
self.blocks = nn.ModuleList([
|
||||
AscendQwen2VisionBlock(dim=self.embed_dim,
|
||||
num_heads=self.num_heads,
|
||||
mlp_ratio=vision_config.mlp_ratio,
|
||||
norm_layer=partial(nn.LayerNorm,
|
||||
eps=norm_eps),
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.blocks.{layer_idx}")
|
||||
for layer_idx in range(vision_config.depth)
|
||||
])
|
||||
|
||||
self.hidden_size_per_attention_head = dist_utils.divide(
|
||||
self.hidden_size, self.num_heads)
|
||||
|
||||
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
|
||||
self.enable_pad = True
|
||||
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
|
||||
self.half_origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head // 2
|
||||
self.half_pad_hidden_size_per_attention_head = (
|
||||
MAX_PAD_SIZE - self.hidden_size_per_attention_head) // 2
|
||||
self.hidden_size_per_attention_head = MAX_PAD_SIZE
|
||||
|
||||
def cal_cos_sin(self, rotary_pos_emb):
|
||||
cos = rotary_pos_emb.cos() # [seqlen, rotary_dim / 2]
|
||||
sin = rotary_pos_emb.sin()
|
||||
if self.enable_pad:
|
||||
cos = torch.nn.functional.pad(
|
||||
cos, (0, self.half_pad_hidden_size_per_attention_head))
|
||||
sin = torch.nn.functional.pad(
|
||||
sin, (0, self.half_pad_hidden_size_per_attention_head))
|
||||
|
||||
if not self.interleaved:
|
||||
cos_new = torch.cat((cos, cos), dim=-1)
|
||||
sin_new = torch.cat((sin, sin), dim=-1)
|
||||
else:
|
||||
cos_new = rearrange(torch.stack((cos, cos), dim=-1),
|
||||
"... d two -> ...(d two)",
|
||||
two=2)
|
||||
sin_new = rearrange(torch.stack((sin, sin), dim=-1),
|
||||
"... d two -> ...(d two)",
|
||||
two=2)
|
||||
cos_new = cos_new.reshape(1, -1, 1,
|
||||
self.hidden_size_per_attention_head)
|
||||
sin_new = sin_new.reshape(1, -1, 1,
|
||||
self.hidden_size_per_attention_head)
|
||||
return cos_new, sin_new
|
||||
|
||||
def pad_qkv_bias(self, bias):
|
||||
first_half = bias.reshape(
|
||||
-1, 3, self.origin_hidden_size_per_attention_head
|
||||
)[:, :, :self.half_origin_hidden_size_per_attention_head]
|
||||
second_half = bias.reshape(
|
||||
-1, 3, self.origin_hidden_size_per_attention_head
|
||||
)[:, :, self.half_origin_hidden_size_per_attention_head:]
|
||||
first_half_padded = torch.nn.functional.pad(
|
||||
first_half, (0, self.half_pad_hidden_size_per_attention_head))
|
||||
second_half_padded = torch.nn.functional.pad(
|
||||
second_half, (0, self.half_pad_hidden_size_per_attention_head))
|
||||
bias_padded = torch.cat([first_half_padded, second_half_padded], dim=2)
|
||||
bias_final = bias_padded.reshape(-1)
|
||||
return bias_final
|
||||
|
||||
def pad_qkv_weight(self, data):
|
||||
qkv_weight_first_half = data.reshape(
|
||||
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
|
||||
)[:, :, :self.half_origin_hidden_size_per_attention_head, :]
|
||||
qkv_weight_second_half = data.reshape(
|
||||
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
|
||||
)[:, :, self.half_origin_hidden_size_per_attention_head:, :]
|
||||
|
||||
qkv_weight_first_half_padded = torch.nn.functional.pad(
|
||||
qkv_weight_first_half,
|
||||
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
|
||||
qkv_weight_second_half_padded = torch.nn.functional.pad(
|
||||
qkv_weight_second_half,
|
||||
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
|
||||
qkv_weight_padded = torch.cat(
|
||||
[qkv_weight_first_half_padded, qkv_weight_second_half_padded],
|
||||
dim=2)
|
||||
qkv_weight_final = qkv_weight_padded.reshape(-1, self.hidden_size)
|
||||
|
||||
if is_enable_nz(qkv_weight_final.dtype):
|
||||
qkv_weight_final_copy = torch.empty_like(qkv_weight_final).copy_(
|
||||
qkv_weight_final)
|
||||
qkv_weight_final_copy = torch_npu.npu_format_cast(
|
||||
qkv_weight_final_copy, ACL_FORMAT_FRACTAL_ND)
|
||||
return qkv_weight_final_copy
|
||||
|
||||
return qkv_weight_final
|
||||
|
||||
def pad_proj_weight(self, data):
|
||||
out_weight = torch.nn.functional.pad(
|
||||
data.reshape(self.hidden_size, -1,
|
||||
self.half_origin_hidden_size_per_attention_head),
|
||||
(0, self.half_pad_hidden_size_per_attention_head, 0, 0)).reshape(
|
||||
self.hidden_size, -1)
|
||||
|
||||
if is_enable_nz(out_weight.dtype):
|
||||
out_weight_copy = torch.empty_like(out_weight).copy_(out_weight)
|
||||
out_weight_copy = torch_npu.npu_format_cast(
|
||||
out_weight_copy, ACL_FORMAT_FRACTAL_ND)
|
||||
return out_weight_copy
|
||||
|
||||
return out_weight
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||
loaded_params: Set[str] = set()
|
||||
|
||||
for name, loaded_weight in weights:
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
if ("attn.proj.weight" in name) and self.enable_pad:
|
||||
param.data = self.pad_proj_weight(param.data)
|
||||
if ("attn.qkv.weight" in name) and self.enable_pad:
|
||||
param.data = self.pad_qkv_weight(param.data)
|
||||
if ("attn.qkv.bias" in name) and self.enable_pad:
|
||||
param.data = self.pad_qkv_bias(param.data)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
grid_thw: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
grid_thw = torch.tensor(grid_thw, dtype=torch.int32)
|
||||
# compute cu_seqlens and avoid cumsum to fit operator unpadFA
|
||||
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
|
||||
grid_thw[:,
|
||||
0]).cpu().to(torch.int32)
|
||||
|
||||
# patchify
|
||||
x = x.to(device=self.device, dtype=self.dtype)
|
||||
x = self.patch_embed(x)
|
||||
|
||||
# compute position embedding
|
||||
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
||||
cos, sin = self.cal_cos_sin(rotary_pos_emb)
|
||||
|
||||
x = x.unsqueeze(1)
|
||||
for blk in self.blocks:
|
||||
x = blk(x, cu_seqlens=cu_seqlens, cos=cos, sin=sin)
|
||||
|
||||
# adapter
|
||||
x = self.merger(x)
|
||||
return x
|
||||
|
||||
|
||||
@MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
|
||||
info=Qwen2VLProcessingInfo,
|
||||
dummy_inputs=Qwen2VLDummyInputsBuilder)
|
||||
class AscendQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
||||
self.visual = AscendQwen2VisionTransformer(
|
||||
self.config.vision_config,
|
||||
norm_eps=getattr(self.config, "rms_norm_eps", 1e-6),
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=maybe_prefix(prefix, "visual"),
|
||||
)
|
||||
Reference in New Issue
Block a user