mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
233
vllm_npu/models/layers/sfa.py
Normal file
233
vllm_npu/models/layers/sfa.py
Normal file
@@ -0,0 +1,233 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig, get_current_vllm_config
|
||||
from vllm.forward_context import ForwardContext, get_forward_context
|
||||
from vllm.model_executor.layers.linear import ReplicatedLinear
|
||||
from vllm.model_executor.layers.mla import MultiHeadLatentAttention
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.utils import direct_register_custom_op
|
||||
|
||||
|
||||
@dataclass
|
||||
class AscendSFAModules:
|
||||
q_a_proj: Optional[torch.nn.Module]
|
||||
q_a_layernorm: Optional[torch.nn.Module]
|
||||
q_proj: Optional[torch.nn.Module]
|
||||
kv_a_proj_with_mqa: torch.nn.Module
|
||||
kv_a_layernorm: torch.nn.Module
|
||||
kv_b_proj: torch.nn.Module
|
||||
o_proj: torch.nn.Module
|
||||
rotary_emb: torch.nn.Module
|
||||
indexer: torch.nn.Module
|
||||
|
||||
|
||||
class AscendSparseFlashAttention(MultiHeadLatentAttention):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
enable_shared_expert_dp: bool,
|
||||
debug_layer_idx: int,
|
||||
first_k_dense_replace: int,
|
||||
tp_size: int,
|
||||
sfa_modules: AscendSFAModules,
|
||||
num_local_heads: int,
|
||||
scaling: float,
|
||||
layers: int,
|
||||
kv_lora_rank: int,
|
||||
qk_rope_head_dim: int,
|
||||
q_lora_rank: Optional[int],
|
||||
qk_nope_head_dim: int,
|
||||
qk_head_dim: int,
|
||||
v_head_dim: int,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.hidden_size = hidden_size
|
||||
self.enable_shared_expert_dp = enable_shared_expert_dp
|
||||
self.debug_layer_idx = debug_layer_idx
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.tp_size = tp_size
|
||||
self.num_local_heads = num_local_heads
|
||||
self.layers = layers
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_head_dim = qk_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.prefix = prefix
|
||||
|
||||
self.sfa_attn = Attention(
|
||||
num_heads=self.num_local_heads,
|
||||
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
scale=scaling,
|
||||
num_kv_heads=1,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
use_mla=True,
|
||||
use_sparse=True,
|
||||
# SFA Args
|
||||
q_lora_rank=self.q_lora_rank,
|
||||
kv_lora_rank=self.kv_lora_rank,
|
||||
qk_nope_head_dim=self.qk_nope_head_dim,
|
||||
qk_rope_head_dim=self.qk_rope_head_dim,
|
||||
qk_head_dim=self.qk_head_dim,
|
||||
v_head_dim=self.v_head_dim,
|
||||
rotary_emb=sfa_modules.rotary_emb,
|
||||
q_a_proj=sfa_modules.q_a_proj,
|
||||
q_a_layernorm=sfa_modules.q_a_layernorm,
|
||||
q_proj=sfa_modules.q_proj,
|
||||
kv_a_proj_with_mqa=sfa_modules.kv_a_proj_with_mqa,
|
||||
kv_a_layernorm=sfa_modules.kv_a_layernorm,
|
||||
kv_b_proj=sfa_modules.kv_b_proj,
|
||||
o_proj=sfa_modules.o_proj,
|
||||
indexer=sfa_modules.indexer)
|
||||
|
||||
compilation_config = get_current_vllm_config().compilation_config
|
||||
if prefix in compilation_config.static_forward_context:
|
||||
raise ValueError(f"Duplicate layer name: {prefix}")
|
||||
compilation_config.static_forward_context[prefix] = self
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
|
||||
num_tokens = hidden_states.shape[0]
|
||||
need_gather_q_kv = False
|
||||
if self.enable_shared_expert_dp and self.debug_layer_idx > self.first_k_dense_replace and self.debug_layer_idx < self.layers:
|
||||
# Simulate all gather to calculate output shape
|
||||
num_tokens = num_tokens * self.tp_size
|
||||
need_gather_q_kv = True
|
||||
if not self.enable_shared_expert_dp or self.debug_layer_idx < self.first_k_dense_replace:
|
||||
output_shape = hidden_states.shape
|
||||
else:
|
||||
rows = num_tokens // self.tp_size
|
||||
if num_tokens % self.tp_size:
|
||||
rows += 1
|
||||
output_shape = (rows, hidden_states.shape[1])
|
||||
# FIXME: This does not seem right, should make sure the buffer is fixed
|
||||
output = torch.empty(output_shape,
|
||||
dtype=hidden_states.dtype,
|
||||
device=hidden_states.device)
|
||||
torch.ops.vllm.sfa_forward(hidden_states, need_gather_q_kv, output,
|
||||
self.prefix)
|
||||
output = output.view(-1, output_shape[-1])
|
||||
return output
|
||||
|
||||
|
||||
def sfa_forward(
|
||||
hidden_states: torch.Tensor,
|
||||
need_gather_q_kv: bool,
|
||||
output: torch.Tensor,
|
||||
layer_name: str,
|
||||
) -> None:
|
||||
forward_context: ForwardContext = get_forward_context()
|
||||
self = forward_context.no_compile_layers[layer_name]
|
||||
if forward_context.attn_metadata:
|
||||
attn_metadata = forward_context.attn_metadata[self.sfa_attn.layer_name]
|
||||
else:
|
||||
attn_metadata = forward_context.attn_metadata
|
||||
kv_cache = self.sfa_attn.kv_cache[forward_context.virtual_engine]
|
||||
self.sfa_attn.impl.forward(hidden_states, kv_cache, attn_metadata,
|
||||
need_gather_q_kv, output)
|
||||
return
|
||||
|
||||
|
||||
class Indexer(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config,
|
||||
dim: int = 7168,
|
||||
n_heads: int = 64,
|
||||
head_dim: int = 128,
|
||||
index_topk: int = 2048,
|
||||
q_lora_rank: int = 1536,
|
||||
rope_head_dim: int = 64,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: Optional[str] = ""):
|
||||
super().__init__()
|
||||
|
||||
self.dim: int = dim # 7168
|
||||
self.n_heads: int = n_heads # 64
|
||||
self.head_dim: int = head_dim # 128
|
||||
self.rope_head_dim: int = rope_head_dim # 64
|
||||
self.index_topk: int = index_topk # 2048
|
||||
self.q_lora_rank: int = q_lora_rank # 1536
|
||||
self.wq_b = ReplicatedLinear(
|
||||
self.q_lora_rank,
|
||||
self.n_heads * self.head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.wq_b",
|
||||
return_bias=False,
|
||||
)
|
||||
self.wk = ReplicatedLinear(
|
||||
self.dim,
|
||||
self.head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.wk",
|
||||
return_bias=False,
|
||||
)
|
||||
self.weights_proj = ReplicatedLinear(
|
||||
self.dim,
|
||||
self.n_heads,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.weights_proj",
|
||||
return_bias=False,
|
||||
)
|
||||
self.k_norm = nn.LayerNorm(self.head_dim)
|
||||
self.softmax_scale = self.head_dim**-0.5
|
||||
|
||||
def forward(self):
|
||||
return
|
||||
|
||||
|
||||
def sfa_forward_fake(
|
||||
hidden_states: torch.Tensor,
|
||||
need_gather_q_kv: bool,
|
||||
output: torch.Tensor,
|
||||
layer_name: str,
|
||||
) -> None:
|
||||
return
|
||||
|
||||
|
||||
direct_register_custom_op(
|
||||
op_name="sfa_forward",
|
||||
op_func=sfa_forward,
|
||||
mutates_args=["output"],
|
||||
fake_impl=sfa_forward_fake,
|
||||
dispatch_key="PrivateUse1",
|
||||
)
|
||||
Reference in New Issue
Block a user