mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
633
vllm_npu/models/deepseek_v3_2.py
Normal file
633
vllm_npu/models/deepseek_v3_2.py
Normal file
@@ -0,0 +1,633 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# # Adapted from
|
||||
# # vllm-project/vllm/blob/main/vllm/model_executor/models/deepseek_v2.py
|
||||
# # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# # vllm-project/vllm/vllm/model_executor/models/deepseek_v2.py
|
||||
# """Inference-only DeepseekV2/DeepseekV3 model."""
|
||||
|
||||
from typing import Any, Dict, Iterable, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.attention import AttentionMetadata
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import (divide, get_pp_group,
|
||||
get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
get_tp_group, split_tensor_along_last_dim,
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (WEIGHT_LOADER_V2_SUPPORTED,
|
||||
ColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.models.deepseek_v2 import \
|
||||
yarn_get_mscale # noqa: E501
|
||||
from vllm.model_executor.models.deepseek_v2 import (
|
||||
DeepseekV2Attention, DeepseekV2DecoderLayer, DeepseekV2ForCausalLM,
|
||||
DeepseekV2MLAAttention, DeepseekV2MLP, DeepseekV2Model, DeepseekV2MoE,
|
||||
get_spec_layer_idx_from_weight_name)
|
||||
from vllm.model_executor.models.utils import (
|
||||
PPMissingLayer, is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from vllm_npu.ascend_config import get_ascend_config
|
||||
from vllm_npu.models.layers.sfa import (AscendSFAModules,
|
||||
AscendSparseFlashAttention, Indexer)
|
||||
from vllm_npu.ops.common_fused_moe import AscendFusedMoE
|
||||
from vllm_npu.ops.linear import AscendLinearBase
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class AscendDeepseekV2Model(DeepseekV2Model, nn.Module):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
# Rewrite this init func mainly for removing cuda-hard code
|
||||
nn.Module.__init__(self)
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.config = config
|
||||
|
||||
self.vocab_size = config.vocab_size
|
||||
assert hasattr(config, "index_topk")
|
||||
topk_tokens = config.index_topk
|
||||
topk_indices_buffer = torch.empty(
|
||||
vllm_config.scheduler_config.max_num_batched_tokens,
|
||||
topk_tokens,
|
||||
dtype=torch.int32,
|
||||
device=current_platform.device_type)
|
||||
|
||||
if get_pp_group().is_first_rank:
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.embed_tokens")
|
||||
else:
|
||||
self.embed_tokens = PPMissingLayer()
|
||||
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: DeepseekV2DecoderLayer(vllm_config, prefix,
|
||||
topk_indices_buffer),
|
||||
prefix=f"{prefix}.layers")
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
else:
|
||||
self.norm = PPMissingLayer()
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
|
||||
class CustomDeepseekV2RowParallelLinear(RowParallelLinear):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
bias: bool = True,
|
||||
input_is_parallel: bool = True,
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
reduce_results: bool = True,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
*,
|
||||
return_bias: bool = True,
|
||||
disable_tp: bool = False,
|
||||
):
|
||||
# Divide the weight matrix along the first dimension.
|
||||
self.tp_rank = (get_tensor_model_parallel_rank()
|
||||
if not disable_tp else 0)
|
||||
self.tp_size = (get_tensor_model_parallel_world_size()
|
||||
if not disable_tp else 1)
|
||||
self.input_size_per_partition = divide(input_size, self.tp_size)
|
||||
self.output_size_per_partition = output_size
|
||||
self.output_partition_sizes = [output_size]
|
||||
|
||||
AscendLinearBase.__init__(self,
|
||||
input_size,
|
||||
output_size,
|
||||
skip_bias_add,
|
||||
params_dtype,
|
||||
quant_config,
|
||||
prefix,
|
||||
return_bias=return_bias,
|
||||
disable_tp=disable_tp)
|
||||
|
||||
self.input_is_parallel = input_is_parallel
|
||||
self.reduce_results = reduce_results
|
||||
|
||||
assert self.quant_method is not None
|
||||
self.quant_method.create_weights(
|
||||
layer=self,
|
||||
input_size_per_partition=self.input_size_per_partition,
|
||||
output_partition_sizes=self.output_partition_sizes,
|
||||
input_size=self.input_size,
|
||||
output_size=self.output_size,
|
||||
params_dtype=self.params_dtype,
|
||||
weight_loader=(
|
||||
self.weight_loader_v2 if self.quant_method.__class__.__name__
|
||||
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
|
||||
if not reduce_results and (bias and not skip_bias_add):
|
||||
raise ValueError("When not reduce the results, adding bias to the "
|
||||
"results can lead to incorrect results")
|
||||
|
||||
if bias:
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(self.output_size, dtype=params_dtype))
|
||||
set_weight_attrs(self.bias, {
|
||||
"output_dim": 0,
|
||||
"weight_loader": self.weight_loader,
|
||||
})
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
self.update_param_tp_status()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_,
|
||||
is_prefill=True,
|
||||
is_force_scatter=False
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[nn.Parameter]]]:
|
||||
if self.input_is_parallel:
|
||||
input_parallel = input_
|
||||
else:
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
splitted_input = split_tensor_along_last_dim(
|
||||
input_, num_partitions=self.tp_size)
|
||||
input_parallel = splitted_input[tp_rank].contiguous()
|
||||
|
||||
# Matrix multiply.
|
||||
assert self.quant_method is not None
|
||||
# Only fuse bias add into GEMM for rank 0 (this ensures that
|
||||
# bias will not get added more than once in TP>1 case)
|
||||
bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
|
||||
output_parallel = self.quant_method.apply(self,
|
||||
input_parallel,
|
||||
bias=bias_)
|
||||
if self.reduce_results and self.tp_size > 1:
|
||||
output = tensor_model_parallel_all_reduce(output_parallel)
|
||||
else:
|
||||
output = output_parallel
|
||||
|
||||
output_bias = self.bias if self.skip_bias_add else None
|
||||
|
||||
if not self.return_bias:
|
||||
return output
|
||||
return output, output_bias
|
||||
|
||||
|
||||
class CustomDeepseekV2SFAAttention(DeepseekV2MLAAttention):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
qk_nope_head_dim: int,
|
||||
qk_rope_head_dim: int,
|
||||
v_head_dim: int,
|
||||
q_lora_rank: Optional[int],
|
||||
kv_lora_rank: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.hidden_size = hidden_size
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
assert num_heads % self.tp_size == 0
|
||||
self.num_local_heads = num_heads // self.tp_size
|
||||
self.layers = config.num_hidden_layers
|
||||
self.first_k_dense_replace = config.first_k_dense_replace
|
||||
|
||||
self.scaling = self.qk_head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.prefix = prefix
|
||||
self.debug_layer_idx = int(self.prefix.split(".")[-2])
|
||||
|
||||
ascend_config = get_ascend_config()
|
||||
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
|
||||
|
||||
if self.q_lora_rank is not None:
|
||||
self.q_a_proj = ReplicatedLinear(
|
||||
self.hidden_size,
|
||||
self.q_lora_rank,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_a_proj",
|
||||
return_bias=False,
|
||||
)
|
||||
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.q_b_proj = ColumnParallelLinear(
|
||||
q_lora_rank,
|
||||
self.num_heads * self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_b_proj",
|
||||
return_bias=False,
|
||||
)
|
||||
else:
|
||||
self.q_proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
self.num_heads * self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_proj",
|
||||
return_bias=False,
|
||||
)
|
||||
|
||||
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
||||
self.hidden_size,
|
||||
self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.kv_a_proj_with_mqa",
|
||||
return_bias=False,
|
||||
)
|
||||
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.kv_b_proj = ColumnParallelLinear(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.kv_b_proj",
|
||||
return_bias=False,
|
||||
)
|
||||
self.o_proj = CustomDeepseekV2RowParallelLinear(
|
||||
self.num_heads * self.v_head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
return_bias=False,
|
||||
)
|
||||
|
||||
if rope_scaling:
|
||||
rope_scaling["rope_type"] = 'deepseek_yarn'
|
||||
self.rotary_emb = get_rope(qk_rope_head_dim,
|
||||
rotary_dim=qk_rope_head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
is_neox_style=False)
|
||||
if rope_scaling:
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
||||
self.scaling = self.scaling * mscale * mscale
|
||||
|
||||
self.dim: int = config.hidden_size # 7168
|
||||
# TODO(zzzzwwjj): wait transformers add these params
|
||||
self.n_heads: int = 64 # 64
|
||||
self.head_dim: int = 128 # 128
|
||||
self.index_topk: int = 2048 # 2048
|
||||
self.indexer = Indexer(
|
||||
config,
|
||||
quant_config=quant_config,
|
||||
dim=self.dim,
|
||||
n_heads=self.n_heads,
|
||||
head_dim=self.head_dim,
|
||||
index_topk=self.index_topk,
|
||||
prefix=f"{prefix}.indexer",
|
||||
)
|
||||
|
||||
sfa_modules = AscendSFAModules(
|
||||
q_a_proj=self.q_a_proj if self.q_lora_rank is not None else None,
|
||||
q_a_layernorm=self.q_a_layernorm
|
||||
if self.q_lora_rank is not None else None,
|
||||
q_proj=self.q_proj if self.q_lora_rank is None else self.q_b_proj,
|
||||
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
|
||||
kv_a_layernorm=self.kv_a_layernorm,
|
||||
kv_b_proj=self.kv_b_proj,
|
||||
o_proj=self.o_proj,
|
||||
rotary_emb=self.rotary_emb,
|
||||
indexer=self.indexer)
|
||||
|
||||
self.sfa_attn = AscendSparseFlashAttention(
|
||||
self.hidden_size,
|
||||
self.enable_shared_expert_dp,
|
||||
self.debug_layer_idx,
|
||||
self.first_k_dense_replace,
|
||||
self.tp_size,
|
||||
sfa_modules,
|
||||
self.num_local_heads,
|
||||
self.scaling,
|
||||
self.layers,
|
||||
self.kv_lora_rank,
|
||||
self.qk_rope_head_dim,
|
||||
self.q_lora_rank,
|
||||
self.qk_nope_head_dim,
|
||||
self.qk_head_dim,
|
||||
self.v_head_dim,
|
||||
cache_config,
|
||||
quant_config,
|
||||
prefix,
|
||||
)
|
||||
self.prefix = prefix
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
|
||||
return self.sfa_attn(positions, hidden_states, kv_cache, attn_metadata)
|
||||
|
||||
|
||||
class CustomDeepseekV2DecoderLayer(DeepseekV2DecoderLayer):
|
||||
|
||||
def __init__(self,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str,
|
||||
topk_indices_buffer=None) -> None:
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
model_config = vllm_config.model_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
parallel_config = vllm_config.parallel_config
|
||||
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
# DecoderLayers are created with `make_layers` which passes the prefix
|
||||
# with the layer's index.
|
||||
layer_idx = int(prefix.split(sep='.')[-1])
|
||||
self.layer_idx = layer_idx
|
||||
self.layers = config.num_hidden_layers
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.tp_rank = get_tp_group().rank_in_group
|
||||
# TODO: enable mla in vllm-ascend
|
||||
if model_config.use_mla:
|
||||
attn_cls = CustomDeepseekV2SFAAttention
|
||||
else:
|
||||
attn_cls = DeepseekV2Attention
|
||||
self.self_attn = attn_cls(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
qk_nope_head_dim=config.qk_nope_head_dim,
|
||||
qk_rope_head_dim=config.qk_rope_head_dim,
|
||||
v_head_dim=config.v_head_dim,
|
||||
q_lora_rank=config.q_lora_rank
|
||||
if hasattr(config, "q_lora_rank") else None,
|
||||
kv_lora_rank=config.kv_lora_rank,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
if (config.n_routed_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0):
|
||||
self.mlp = DeepseekV2MoE(
|
||||
config=config,
|
||||
parallel_config=parallel_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
if self.mlp.gate.e_score_correction_bias is not None:
|
||||
self.mlp.gate.e_score_correction_bias.data = (
|
||||
self.mlp.gate.e_score_correction_bias.data.to(
|
||||
dtype=torch.get_default_dtype()))
|
||||
else:
|
||||
self.mlp = DeepseekV2MLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
self.first_k_dense_replace = config.first_k_dense_replace
|
||||
self.tp_group = get_tp_group().device_group
|
||||
|
||||
|
||||
class CustomDeepseekV2ForCausalLM(DeepseekV2ForCausalLM):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
|
||||
# `packed_modules_mapping` needs to be modified before
|
||||
# initializing DeepseekV2Model, as it is passed inplace to
|
||||
# quantization config init and may be used to select the
|
||||
# quant_method for relevant layers during initialization.
|
||||
self.fuse_qkv_a_proj = hasattr(
|
||||
config, "q_lora_rank") and config.q_lora_rank is not None
|
||||
if self.fuse_qkv_a_proj:
|
||||
self.packed_modules_mapping["fused_qkv_a_proj"] = [
|
||||
"q_a_proj",
|
||||
"kv_a_proj_with_mqa",
|
||||
]
|
||||
|
||||
self.model = AscendDeepseekV2Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "model"))
|
||||
if get_pp_group().is_last_rank:
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "lm_head"))
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
self.expert_weights: list[Any] = []
|
||||
|
||||
# Set MoE hyperparameters
|
||||
self.num_moe_layers = (config.num_hidden_layers -
|
||||
config.first_k_dense_replace)
|
||||
self.num_expert_groups = config.n_group
|
||||
|
||||
self.moe_layers: list[FusedMoE] = []
|
||||
example_moe = None
|
||||
for layer in self.model.layers:
|
||||
if isinstance(layer, PPMissingLayer):
|
||||
continue
|
||||
|
||||
assert isinstance(layer, DeepseekV2DecoderLayer)
|
||||
if isinstance(layer.mlp, DeepseekV2MoE):
|
||||
# Pick last one layer since the first ones may be dense layers.
|
||||
example_moe = layer.mlp
|
||||
self.moe_layers.append(layer.mlp.experts)
|
||||
|
||||
if example_moe is None:
|
||||
raise RuntimeError("No DeepseekV2MoE layer found in model.layers.")
|
||||
|
||||
self.num_logical_experts = example_moe.n_logical_experts
|
||||
self.num_physical_experts = example_moe.n_physical_experts
|
||||
self.num_local_physical_experts = example_moe.n_local_physical_experts
|
||||
self.num_routed_experts = example_moe.n_routed_experts
|
||||
self.num_shared_experts = example_moe.n_shared_experts
|
||||
self.num_redundant_experts = example_moe.n_redundant_experts
|
||||
|
||||
# NOTE: This `load_weights` is mainly copied from
|
||||
# https://github.com/vllm-project/vllm/commit/07b8fae219b1fff51ef115c38c44b51395be5bb5
|
||||
# to fix CI, and it is different from the implementation in main
|
||||
# TODO: support eplb style load_weights
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
""""""
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = AscendFusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="gate_proj",
|
||||
ckpt_down_proj_name="down_proj",
|
||||
ckpt_up_proj_name="up_proj",
|
||||
num_experts=self.config.n_routed_experts)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if "module" in name:
|
||||
continue
|
||||
|
||||
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
|
||||
if spec_layer is not None:
|
||||
continue # skip spec decode layers for main model
|
||||
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
if weight_name not in name:
|
||||
continue
|
||||
# We have mlp.experts[0].gate_proj in the checkpoint.
|
||||
# Since we handle the experts below in expert_params_mapping,
|
||||
# we need to skip here BEFORE we update the name, otherwise
|
||||
# name will be updated to mlp.experts[0].gate_up_proj, which
|
||||
# will then be updated below in expert_params_mapping
|
||||
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
||||
if (("mlp.experts." in name) and name not in params_dict):
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id,
|
||||
return_success=False)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
|
||||
class CustomDeepseekV3ForCausalLM(CustomDeepseekV2ForCausalLM):
|
||||
pass
|
||||
|
||||
|
||||
DeepseekV2DecoderLayer.__init__ = CustomDeepseekV2DecoderLayer.__init__
|
||||
Reference in New Issue
Block a user