This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

113
vllm_npu/lora/lora_ops.py Normal file
View File

@@ -0,0 +1,113 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def bgmv_shrink(inputs: torch.Tensor,
lora_a_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
scaling: float = 1.0):
return torch.ops._C_ascend.bgmv_shrink(
inputs,
lora_a_weights,
lora_indices_tensor,
output_tensor,
scaling,
)
def bgmv_expand(inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
add_inputs: bool = True):
return torch.ops._C_ascend.bgmv_expand(
inputs,
lora_b_weights,
lora_indices_tensor,
output_tensor,
0,
output_tensor.size(1),
)
def bgmv_expand_slice(inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
slice_offset: int,
slice_size: int,
add_inputs: bool = True):
return torch.ops._C_ascend.bgmv_expand(inputs, lora_b_weights,
lora_indices_tensor, output_tensor,
slice_offset, slice_size)
def sgmv_shrink(
inputs: torch.Tensor,
lora_a_weights: torch.Tensor,
output_tensor: torch.Tensor,
b_seq_start_loc: torch.Tensor,
seq_len_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
batches: int,
max_seq_length: int,
token_nums: int,
scaling: float,
):
return torch.ops._C_ascend.sgmv_shrink(inputs, lora_a_weights,
lora_indices_tensor, seq_len_tensor,
output_tensor, scaling)
def sgmv_expand(inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
b_seq_start_loc: torch.Tensor,
seq_len_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
batches: int,
max_seq_length: int,
token_nums: int,
add_inputs: bool = False):
return torch.ops._C_ascend.sgmv_expand(
inputs,
lora_b_weights,
lora_indices_tensor,
seq_len_tensor,
output_tensor,
0,
output_tensor.size(1),
)
def sgmv_expand_slice(inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
b_seq_start_loc: torch.Tensor,
seq_len_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
batches: int,
max_seq_length: int,
token_nums: int,
slice_offset: int,
slice_size: int,
add_inputs: bool = False):
return torch.ops._C_ascend.sgmv_expand(inputs, lora_b_weights,
lora_indices_tensor, seq_len_tensor,
output_tensor, slice_offset,
slice_size)

356
vllm_npu/lora/punica_npu.py Normal file
View File

@@ -0,0 +1,356 @@
# SPDX-License-Identifier: Apache-2.0
from typing import Callable, Optional, Tuple, Union
import torch
from vllm_npu.utils import is_310p
if is_310p():
from vllm.lora.ops.torch_ops import (bgmv_expand, bgmv_expand_slice,
bgmv_shrink, sgmv_expand,
sgmv_expand_slice, sgmv_shrink)
else:
from vllm_npu.lora.lora_ops import (bgmv_expand, bgmv_expand_slice,
bgmv_shrink, sgmv_expand,
sgmv_expand_slice, sgmv_shrink)
from vllm.lora.punica_wrapper.punica_base import PunicaWrapperBase
from vllm_npu.lora.utils import refresh_all_lora_classes
# The platforms that are compatible with the PyTorch-native implementation can
# inherit this class
class PunicaWrapperNPU(PunicaWrapperBase):
"""
PunicaWrapperNPU is designed to manage and provide metadata for the punica
kernel. The main function is to maintain the state information for
Multi-LoRA, and to provide the interface for the pytorch punica ops.
"""
def __init__(self, max_num_batched_tokens: int, max_batches: int,
device: Union[torch.device, str], **kwargs):
PunicaWrapperBase.__init__(self, max_num_batched_tokens, max_batches,
device)
refresh_all_lora_classes()
def _shrink_prefill(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
scale: float,
):
#No LoRA request, so return directly
if self.no_lora:
return
sgmv_shrink(
x,
w_t_all,
y,
*self.prefill_metadata,
scale,
)
def _shrink_decode(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
scale: float,
):
bgmv_shrink(x, w_t_all, y, self.token_lora_indices, scale)
def _expand_prefill(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
add_inputs: bool,
):
#No LoRA request, so return directly
if self.no_lora:
return
sgmv_expand(
x,
w_t_all,
y,
*self.prefill_metadata,
add_inputs,
)
def _expand_decode(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
add_inputs: bool,
):
bgmv_expand(x, w_t_all, y, self.token_lora_indices, add_inputs)
def _expand_slice_prefill(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: int,
y_slice_size: int,
add_inputs: bool,
):
#No LoRA request, so return directly
if self.no_lora:
return
sgmv_expand_slice(
x,
w_t_all,
y,
*self.prefill_metadata,
y_offset,
y_slice_size,
add_inputs,
)
def _expand_slice_decode(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: int,
y_slice_size: int,
add_inputs: bool,
):
bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset,
y_slice_size, add_inputs)
def _apply_expand(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: int,
y_slice_size: int,
add_inputs: bool = True,
):
"""
Perform the ` y[:,y_offset:y_offset+y_slice_size]+=x@w_t_all`
computation, which is suitable for the
GEMM of lora'b.
"""
expand_slice_fun: Callable = (self._expand_slice_prefill
if self.is_prefill else
self._expand_slice_decode)
expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_inputs)
def _apply_shrink(self, y: torch.Tensor, x: torch.Tensor,
w_t_all: torch.Tensor, scale: float):
"""
Perform the ` y+=x@w_t_all` computation, which is suitable for the
GEMM of lora'a.
When `is_prefill is` true, it indicates that it is currently the
prefill stage, and the `_shrink_prefill` function should be called.
Otherwise, it is the decode stage, and the _shrink_decode function
should be called.
"""
y_org = y
y = y.view(-1, y.shape[-1])
shrink_fun: Callable = (self._shrink_prefill
if self.is_prefill else self._shrink_decode)
shrink_fun(y, x, w_t_all, scale)
y = y.view_as(y_org)
def add_shrink(self, y: Union[Tuple[torch.Tensor, ...], torch.Tensor],
x: torch.Tensor, lora_a_stacked: Tuple[torch.Tensor, ...],
scale: float, **kwargs):
"""
Performs GEMM for multiple slices of lora_a.
When `is_prefill is` true, it indicates that it is currently the
prefill stage, and the `_shrink_prefill` function should be called.
Otherwise, it is the decode stage, and the _shrink_decode function
should be called.
Semantics:
for i in range(len(lora_a_stacked)):
y[i] += (x @ lora_a_stacked[i]) * scale
Args:
y (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Output tensors
x (torch.Tensor): Input tensor
lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weights
scale (float): Scaling factor for the operation
"""
x = x.view(-1, x.shape[-1])
# TODO fuse these kernels
for slice_idx in range(len(lora_a_stacked)):
self._apply_shrink(y[slice_idx], x, lora_a_stacked[slice_idx],
scale)
def add_expand(self,
y: torch.Tensor,
x: Union[Tuple[torch.Tensor, ...], torch.Tensor],
lora_b_stacked: Tuple[torch.Tensor, ...],
lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]],
output_slices: Tuple[int, ...],
offset_start: int = 0,
add_inputs=True,
**kwargs) -> None:
"""
Performs GEMM and bias addition for multiple slices of lora_b.
Semantics:
for i in range(len(lora_b_stacked)):
slice = output_slices[i]
y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] +
lora_bias_stacked[i]
offset += slice
Args:
y (torch.Tensor): Output tensor.
x (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Input tensors
lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight
lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]):
bias's weight
output_slices (Tuple[int, ...]): Every slice's size
add_inputs (bool): Defaults to True.
"""
y_org = y
y = y.view(-1, y.shape[-1])
offset_left = offset_start
if lora_bias_stacked is not None:
self._apply_bias(self.token_lora_indices, y, output_slices,
lora_bias_stacked)
for slice_idx in range(len(lora_b_stacked)):
self._apply_expand(
y,
x[slice_idx],
lora_b_stacked[slice_idx],
offset_left,
output_slices[slice_idx],
add_inputs=add_inputs,
)
offset_left += output_slices[slice_idx]
y = y.view_as(y_org)
def add_lora_embedding(self,
y: torch.Tensor,
x: torch.Tensor,
lora_b_stacked: torch.Tensor,
add_inputs: bool = True,
**kwargs) -> None:
"""
Applies lora specifically for VocabParallelEmbeddingWithLoRA.
Semantics:
y += x @ lora_b_stacked
Args:
y (torch.Tensor): Output tensor.
x (torch.Tensor): Input tensor.
lora_b_stacked (torch.Tensor): lora_b's weights.
add_inputs (bool): Default to True.
"""
# Embedding layer only need expand op
expand_fun: Callable = (self._expand_prefill
if self.is_prefill else self._expand_decode)
expand_fun(y, x, lora_b_stacked, add_inputs)
def add_lora_linear(self,
y: torch.Tensor,
x: torch.Tensor,
lora_a_stacked: Tuple[torch.Tensor, ...],
lora_b_stacked: Tuple[torch.Tensor, ...],
lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]],
scale: float,
output_slices: Tuple[int, ...],
*,
buffer: Optional[Tuple[torch.Tensor, ...]] = None,
**kwargs) -> None:
"""
Applicable to linear-related lora.
Semantics:
for i in range(len(lora_a_stacked)):
y[i] += (
x[i].unsqueeze(0)
@ lora_a_stacked[indices[i], layer_idx, :, :]
@ lora_b_stacked[indices[i], layer_idx, :, :]
* scale
).squeeze(0)+lora_bias_stacked[i]
Args:
y (torch.Tensor): Output tensor. Will be changed in-place.
x (torch.Tensor): Input tensor
lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weight.
lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight.
lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): lora's bias.
scale (float): Scaling factor.
output_slices (Tuple[int, ...]): Every slice's size.
buffer (Optional[Tuple[torch.Tensor, ...]]): Defaults to None.
"""
assert len(lora_a_stacked) == len(lora_b_stacked) == len(output_slices)
if lora_bias_stacked is not None:
assert len(lora_bias_stacked) == len(output_slices)
y = self._apply_bias(self.token_lora_indices, y, output_slices,
lora_bias_stacked)
if buffer is None:
r = lora_b_stacked[0].size(-1)
# We set the buffer to be float32 by default, consistent with the
# triton op
buffer = tuple(
torch.zeros(
(x.size(0), r), dtype=torch.float32, device=x.device)
for _ in range(len(output_slices)))
self.add_shrink(buffer, x, lora_a_stacked, scale, **kwargs)
self.add_expand(y,
buffer,
lora_b_stacked,
None,
output_slices,
add_inputs=True,
**kwargs)
def add_lora_logits(self,
y: torch.Tensor,
x: torch.Tensor,
lora_a_stacked: torch.Tensor,
lora_b_stacked: torch.Tensor,
scale,
*,
buffer: Optional[torch.Tensor] = None,
**kwargs) -> None:
"""
Applies lora specifically for LogitsProcessorWithLoRA.
Semantics:
buffer = (x @ lora_a_stacked) * scale
y += buffer @ lora_b_stacked
Args:
y (torch.Tensor): Output tensor.
x (torch.Tensor): Input tensor.
lora_a_stacked (torch.Tensor): lora_a's weights.
lora_b_stacked (torch.Tensor):lora_b's weights.
scale (float): Scaling factor.
buffer (Optional[torch.Tensor]):Default to None.
"""
y_org = y
y = y.view(-1, y.shape[-1])
x = x.view(-1, x.shape[-1])
r = lora_b_stacked.size(-1)
if buffer is None:
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
indices = self.sampler_indices
bgmv_shrink(x, lora_a_stacked, buffer, indices, scale)
bgmv_expand(buffer, lora_b_stacked, y, indices, add_inputs=True)
y = y.view_as(y_org)

110
vllm_npu/lora/utils.py Normal file
View File

@@ -0,0 +1,110 @@
from typing import Optional
import vllm
from torch import nn
from transformers import PretrainedConfig
from vllm.config import LoRAConfig
from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
MergedColumnParallelLinearWithLoRA,
MergedQKVParallelLinearWithLoRA,
QKVParallelLinearWithLoRA,
RowParallelLinearWithLoRA,
VocabParallelEmbeddingWithLoRA)
from vllm.lora.layers.utils import _not_fully_sharded_can_replace
from vllm_npu.ops.linear import (AscendColumnParallelLinear,
AscendMergedColumnParallelLinear,
AscendQKVParallelLinear,
AscendRowParallelLinear)
from vllm_npu.ops.vocab_parallel_embedding import \
AscendVocabParallelEmbedding
class AscendColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendColumnParallelLinear
class AscendMergedColumnParallelLinearWithLoRA(
MergedColumnParallelLinearWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendMergedColumnParallelLinear
class AscendRowParallelLinearWithLoRA(RowParallelLinearWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendRowParallelLinear
class AscendVocabParallelEmbeddingWithLoRA(VocabParallelEmbeddingWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendVocabParallelEmbedding
class AscendQKVParallelLinearWithLoRA(QKVParallelLinearWithLoRA):
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: list,
model_config: Optional[PretrainedConfig]) -> bool:
return type(source_layer) is AscendQKVParallelLinear and len(
packed_modules_list) == 1
class AscendMergedQKVParallelLinearWithLoRA(MergedQKVParallelLinearWithLoRA):
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return (type(source_layer) is AscendQKVParallelLinear
and len(packed_modules_list) == 3)
def refresh_all_lora_classes():
vllm.lora.utils._all_lora_classes.add(AscendColumnParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(
AscendMergedColumnParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(AscendRowParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(AscendVocabParallelEmbeddingWithLoRA)
vllm.lora.utils._all_lora_classes.add(AscendQKVParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(
AscendMergedQKVParallelLinearWithLoRA)