mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
0
vllm_npu/eplb/core/policy/__init__.py
Normal file
0
vllm_npu/eplb/core/policy/__init__.py
Normal file
42
vllm_npu/eplb/core/policy/policy_abstract.py
Normal file
42
vllm_npu/eplb/core/policy/policy_abstract.py
Normal file
@@ -0,0 +1,42 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2023-2024. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
class DynamicConfig:
|
||||
placement_policy = None
|
||||
|
||||
max_transferred_expert_per_layer = 100 # Maximum number of experts that can be migrated per layer on a single host
|
||||
ep_worldsize = 64 # Total number of dies across the entire cluster where experts are distributed
|
||||
num_die_per_host = 8 # Number of dies on each host machine
|
||||
|
||||
|
||||
class EplbPolicy:
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
self.config = config
|
||||
|
||||
@abstractmethod
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
"""
|
||||
Pass in the weights and return expert replication and placement under relevant constraints.
|
||||
INPUT:
|
||||
current_expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_workload = expert_table[layer0][rankId][expert_num_i]
|
||||
|
||||
RETURNED: (res, expert_table)
|
||||
res:
|
||||
1 -- table_changed
|
||||
0 -- not_changed
|
||||
|
||||
expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_num_i --- [0, MaxExpertPerRank]
|
||||
expertID = expert_table[layer0][rankId][expert_num_i]
|
||||
array_values:
|
||||
[0, 1, 2, 3, 248]
|
||||
[4, 5, 6, 7, 254]
|
||||
[8, 9, 10, 11, 71]
|
||||
...
|
||||
[252, 253, 254, 255, 0]
|
||||
"""
|
||||
pass
|
||||
389
vllm_npu/eplb/core/policy/policy_dynamic_ep.py
Normal file
389
vllm_npu/eplb/core/policy/policy_dynamic_ep.py
Normal file
@@ -0,0 +1,389 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
from collections import defaultdict
|
||||
from typing import cast
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
|
||||
|
||||
class DynamicTable:
|
||||
# workload_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: workload (heat) at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the workload (heat) of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
workload_table = None
|
||||
|
||||
# placement_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: physical expert ID at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the physical expert ID of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
placement_table = None
|
||||
|
||||
|
||||
class DynamicEplb(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
|
||||
@staticmethod
|
||||
def add_redundant(current_expert_table, expert_workload,
|
||||
num_original_expert):
|
||||
layer_num, npu_num, experts_per_npu = expert_workload.shape
|
||||
workload_new = np.zeros((layer_num, num_original_expert))
|
||||
for layer_idx in range(layer_num):
|
||||
workload_dict: dict[int, int] = defaultdict(int)
|
||||
placement_layer = current_expert_table[layer_idx].copy()
|
||||
workload_layer = expert_workload[layer_idx].copy()
|
||||
for npu_idx in range(npu_num):
|
||||
for expert_idx in range(experts_per_npu):
|
||||
workload_dict[placement_layer[npu_idx][
|
||||
expert_idx]] += workload_layer[npu_idx][expert_idx]
|
||||
for expert_idx in range(num_original_expert):
|
||||
workload_new[layer_idx][expert_idx] = workload_dict[expert_idx]
|
||||
return workload_new
|
||||
|
||||
@staticmethod
|
||||
# Split hot (high-load) experts into redundant experts
|
||||
def original_compute_balanced_pack_redundancy(origin_weights, card_num,
|
||||
num_redundancy_expert):
|
||||
# Step 1: Sort the items by weight in descending order (we are sorting by weight now)
|
||||
# Sort based on the second element (the second value of each tuple)
|
||||
route_expert_num = len(origin_weights)
|
||||
route_expert_redundancy: list[list[int]] = [
|
||||
[] for _ in range(route_expert_num)
|
||||
]
|
||||
for i in range(num_redundancy_expert):
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights],
|
||||
kind='stable')[::-1]
|
||||
weights = [origin_weights[idx] for idx in sorted_indices]
|
||||
tmp_raw_weight = weights[0][1] * (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
route_expert_redundancy[weights[0][0]].append(route_expert_num + i)
|
||||
avg_weight = tmp_raw_weight / (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
weights[0] = (weights[0][0], avg_weight)
|
||||
origin_weights = weights
|
||||
|
||||
# Step 2: Calculate the number of items per box
|
||||
expert_num = route_expert_num + num_redundancy_expert
|
||||
items_per_box = expert_num // card_num # Number of items per box
|
||||
remaining_items = expert_num % card_num # Number of items per box
|
||||
|
||||
# Step 3: Initialize card_num boxes with empty lists to store item IDs
|
||||
boxes: list[list[int]] = [[] for _ in range(card_num)]
|
||||
boxes_weights: list[list[float]] = [[] for _ in range(card_num)]
|
||||
box_weights = [0] * card_num # To store the total weight of each box
|
||||
box_counts = [0] * card_num # To store the number of items in each box
|
||||
index = 0
|
||||
for i in range(route_expert_num):
|
||||
redundancy_num = len(route_expert_redundancy[i])
|
||||
for _ in range(redundancy_num):
|
||||
cur_weight = 0
|
||||
for item, weight in origin_weights:
|
||||
if item == i:
|
||||
cur_weight = weight
|
||||
|
||||
boxes[index].append(i)
|
||||
boxes_weights[index].append(cur_weight)
|
||||
box_weights[index] += cur_weight
|
||||
box_counts[index] += 1
|
||||
index += 1
|
||||
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights],
|
||||
kind='stable')[::-1]
|
||||
origin_weights = [origin_weights[idx] for idx in sorted_indices]
|
||||
# Step 4: Distribute items into boxes based on weight
|
||||
for item_id, weight in origin_weights:
|
||||
# Find the box with the least items but not full
|
||||
min_box_index = -1
|
||||
for i in range(card_num):
|
||||
if item_id in boxes[i]:
|
||||
continue
|
||||
# Only choose boxes that still have space (box_counts[i] < items_per_box)
|
||||
if box_counts[i] < items_per_box or (box_counts[i]
|
||||
== items_per_box
|
||||
and remaining_items > 0):
|
||||
if min_box_index == -1 or box_weights[i] < box_weights[
|
||||
min_box_index]:
|
||||
min_box_index = i
|
||||
|
||||
# Place the item (id) into the selected box
|
||||
boxes[min_box_index].append(item_id)
|
||||
boxes_weights[min_box_index].append(weight)
|
||||
box_weights[min_box_index] += weight
|
||||
box_counts[min_box_index] += 1
|
||||
|
||||
# If there's an imbalance in the remaining items, reduce the "remaining_items" counter
|
||||
if box_counts[min_box_index] == (items_per_box +
|
||||
1) and remaining_items > 0:
|
||||
remaining_items -= 1
|
||||
|
||||
# Step 5: Output each box's contents and total weight
|
||||
result = []
|
||||
for i in range(card_num):
|
||||
result.append({
|
||||
"box_index": i + 1,
|
||||
"items": boxes[i], # List of item IDs in the box
|
||||
"weight": boxes_weights[i],
|
||||
"total_weight": box_weights[i], # Total weight in this box
|
||||
"item_count": box_counts[i] # Number of items in the box
|
||||
})
|
||||
|
||||
return result, boxes
|
||||
|
||||
# Split hot (high-load) experts into redundant experts
|
||||
@staticmethod
|
||||
def compute_balanced_pack_redundancy(origin_weights, card_num,
|
||||
num_redundancy_expert):
|
||||
route_expert_num = len(origin_weights)
|
||||
route_expert_redundancy: list[list[int]] = [
|
||||
[] for _ in range(route_expert_num)
|
||||
]
|
||||
for i in range(num_redundancy_expert):
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights],
|
||||
kind='stable')[::-1]
|
||||
weights = [origin_weights[idx] for idx in sorted_indices]
|
||||
tmp_raw_weight = weights[0][1] * (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
route_expert_redundancy[weights[0][0]].append(route_expert_num + i)
|
||||
avg_weight = tmp_raw_weight / (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
weights[0] = (weights[0][0], avg_weight)
|
||||
origin_weights = weights
|
||||
|
||||
expert_num = route_expert_num + num_redundancy_expert
|
||||
if card_num == 0:
|
||||
raise RuntimeError("card_num can not be 0.")
|
||||
items_per_box = expert_num // card_num
|
||||
remaining_items = expert_num % card_num
|
||||
|
||||
boxes: list[list[int]] = [[] for _ in range(card_num)]
|
||||
boxes_weights: list[list[float]] = [[] for _ in range(card_num)]
|
||||
box_weights = [0] * card_num
|
||||
box_counts = [0] * card_num
|
||||
|
||||
all_weights = np.zeros((expert_num, ), dtype='object')
|
||||
all_weights[:route_expert_num] = origin_weights
|
||||
|
||||
index = route_expert_num
|
||||
for i in range(route_expert_num):
|
||||
redundancy_num = len(route_expert_redundancy[i])
|
||||
for _ in range(redundancy_num):
|
||||
for item, weight in origin_weights:
|
||||
if item == i:
|
||||
all_weights[index] = (item, weight)
|
||||
index += 1
|
||||
|
||||
sorted_indices = np.argsort([t[1] for t in all_weights],
|
||||
kind='stable')[::-1]
|
||||
all_weights = [all_weights[idx] for idx in sorted_indices]
|
||||
for item_id, weight in all_weights:
|
||||
min_box_index = -1
|
||||
for i in range(card_num):
|
||||
if box_counts[i] < items_per_box or (box_counts[i]
|
||||
== items_per_box
|
||||
and remaining_items > 0):
|
||||
if min_box_index == -1 or box_weights[i] < box_weights[
|
||||
min_box_index]:
|
||||
if item_id not in boxes[i]:
|
||||
min_box_index = i
|
||||
|
||||
boxes[min_box_index].append(item_id)
|
||||
boxes_weights[min_box_index].append(weight)
|
||||
box_weights[min_box_index] += weight
|
||||
box_counts[min_box_index] += 1
|
||||
|
||||
if box_counts[min_box_index] == (items_per_box +
|
||||
1) and remaining_items > 0:
|
||||
remaining_items -= 1
|
||||
|
||||
result = []
|
||||
for i in range(card_num):
|
||||
result.append({
|
||||
"box_index": i + 1,
|
||||
"items": boxes[i],
|
||||
"weight": boxes_weights[i],
|
||||
"total_weight": box_weights[i],
|
||||
"item_count": box_counts[i]
|
||||
})
|
||||
|
||||
return result, boxes
|
||||
|
||||
# Scheme without redundant experts
|
||||
@staticmethod
|
||||
def compute_balanced_pack(origin_weights, card_num):
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights])[::-1]
|
||||
weights = origin_weights[sorted_indices]
|
||||
expert_num = len(weights)
|
||||
if card_num == 0:
|
||||
raise RuntimeError("card_num can not be 0.")
|
||||
items_per_box = expert_num // card_num
|
||||
remaining_items = expert_num % card_num
|
||||
|
||||
boxes: list[list[int]] = [[] for _ in range(card_num)]
|
||||
boxes_weights: list[list[float]] = [[] for _ in range(card_num)]
|
||||
box_weights = [0] * card_num
|
||||
box_counts = [0] * card_num
|
||||
|
||||
for item_id, weight in weights:
|
||||
min_box_index = -1
|
||||
for i in range(card_num):
|
||||
if box_counts[i] < items_per_box or (box_counts[i]
|
||||
== items_per_box
|
||||
and remaining_items > 0):
|
||||
if min_box_index == -1 or box_weights[i] < box_weights[
|
||||
min_box_index]:
|
||||
min_box_index = i
|
||||
|
||||
boxes[min_box_index].append(item_id)
|
||||
boxes_weights[min_box_index].append(weight)
|
||||
box_weights[min_box_index] += weight
|
||||
box_counts[min_box_index] += 1
|
||||
|
||||
if box_counts[min_box_index] == (items_per_box +
|
||||
1) and remaining_items > 0:
|
||||
remaining_items -= 1
|
||||
|
||||
result = []
|
||||
for i in range(card_num):
|
||||
result.append({
|
||||
"box_index": i + 1,
|
||||
"items": boxes[i],
|
||||
"weight": boxes_weights[i],
|
||||
"total_weight": box_weights[i],
|
||||
"item_count": box_counts[i]
|
||||
})
|
||||
|
||||
return result, boxes
|
||||
|
||||
@staticmethod
|
||||
def get_redundant_num(npu_num, counts):
|
||||
redundant_num_each_npu: int = np.sum(counts - 1)
|
||||
return redundant_num_each_npu
|
||||
|
||||
@staticmethod
|
||||
def calculate_max_heat_per_layer(workload_table, layer_num):
|
||||
max_heat_per_layer: list[float] = []
|
||||
for layer_idx in range(layer_num):
|
||||
npu_heats_now = np.sum(workload_table[layer_idx], axis=1)
|
||||
max_heat_per_layer.append(np.max(npu_heats_now))
|
||||
return max_heat_per_layer
|
||||
|
||||
@staticmethod
|
||||
def constraint_expert_local_exchange(current_expert_table,
|
||||
global_deployment):
|
||||
for layer_id in range(len(global_deployment)):
|
||||
for card_id in range(len(global_deployment[layer_id])):
|
||||
current_list = [
|
||||
int(x) for x in current_expert_table[layer_id][card_id]
|
||||
]
|
||||
new_list = [
|
||||
int(x) for x in global_deployment[layer_id][card_id]
|
||||
]
|
||||
num = len(new_list)
|
||||
|
||||
new_index = [-1] * num
|
||||
new_result = [-1] * num
|
||||
remaining_elements = []
|
||||
|
||||
for i in range(num):
|
||||
flag = True
|
||||
for j in range(num):
|
||||
if new_list[i] == current_list[j] and new_index[
|
||||
j] == -1:
|
||||
new_index[j] = 0
|
||||
new_result[j] = current_list[j]
|
||||
flag = False
|
||||
break
|
||||
if flag:
|
||||
remaining_elements.append(new_list[i])
|
||||
|
||||
index = 0
|
||||
for k in range(num):
|
||||
if new_result[k] == -1:
|
||||
new_result[k] = remaining_elements[index]
|
||||
index += 1
|
||||
|
||||
global_deployment[layer_id][card_id] = new_result
|
||||
|
||||
return global_deployment
|
||||
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
|
||||
info = DynamicTable()
|
||||
info.workload_table = np.array(expert_workload)
|
||||
info.placement_table = np.array(current_expert_table)
|
||||
assert info.workload_table is not None
|
||||
layer_num, num_npus, experts_per_npu = info.workload_table.shape
|
||||
assert info.placement_table is not None
|
||||
row = cast(np.ndarray, info.placement_table[0])
|
||||
expert_ids, counts = np.unique(row, return_counts=True)
|
||||
num_redundancy_expert = self.get_redundant_num(num_npus, counts)
|
||||
num_original_expert = len(expert_ids)
|
||||
layer_workloads = self.add_redundant(info.placement_table,
|
||||
info.workload_table,
|
||||
num_original_expert)
|
||||
max_heat_per_layer_before = self.calculate_max_heat_per_layer(
|
||||
info.workload_table, layer_num)
|
||||
npu_heat_all_origin = sum(max_heat_per_layer_before)
|
||||
|
||||
# Perform load balancing and deploy redundant experts
|
||||
layer_num = layer_workloads.shape[0]
|
||||
expert_num = layer_workloads.shape[1]
|
||||
# Validate that the number of experts, number of cards, and number of redundant experts do not exceed the number of cards
|
||||
if num_original_expert != expert_num:
|
||||
raise ValueError(
|
||||
f"the number of original experts {num_original_expert} must be equal to expert_num {expert_num}"
|
||||
)
|
||||
|
||||
if num_npus <= 0:
|
||||
raise ValueError("the number of NPUs must be greater than 0")
|
||||
|
||||
if num_npus < num_redundancy_expert:
|
||||
raise ValueError(
|
||||
f"the number of NPUs {num_npus} must be greater than or equal to the number of redundant experts {num_redundancy_expert}"
|
||||
)
|
||||
|
||||
# Number of experts deployed on each card includes one redundant expert
|
||||
global_deployment: list[list[list[int]]] = [[[]
|
||||
for _ in range(num_npus)]
|
||||
for _ in range(layer_num)]
|
||||
# Iterate to obtain the placement strategy for each layer, taking computational balance into account
|
||||
max_heat_per_layer_after = np.zeros([layer_num])
|
||||
for layer in range(layer_num):
|
||||
# Get the expert IDs and their corresponding workloads for the current layer;
|
||||
# workloads need to be normalized, and one redundant expert is added per card
|
||||
weights = np.zeros((expert_num, ), dtype='object')
|
||||
for expert_id, workload_weight in enumerate(
|
||||
layer_workloads[layer]):
|
||||
weights[expert_id] = (expert_id, workload_weight)
|
||||
|
||||
# Obtain the globally balanced placement strategy for each layer
|
||||
result, layer_deployment = self.original_compute_balanced_pack_redundancy(
|
||||
weights, num_npus, num_redundancy_expert)
|
||||
|
||||
global_deployment[layer] = layer_deployment
|
||||
max_heat_per_layer_after[layer] = max(
|
||||
result, key=lambda x: x['total_weight'])['total_weight']
|
||||
|
||||
new_global_deployment = self.constraint_expert_local_exchange(
|
||||
current_expert_table, global_deployment)
|
||||
# Obtain the priority of each layer
|
||||
layer_changed_ratio = []
|
||||
for layer_idx in range(layer_num):
|
||||
layer_changed_ratio.append(max_heat_per_layer_after[layer_idx] /
|
||||
max_heat_per_layer_before[layer_idx])
|
||||
|
||||
per_layer_priority = np.argsort(layer_changed_ratio)
|
||||
npu_heat_all_after = sum(max_heat_per_layer_after)
|
||||
|
||||
change = 0
|
||||
if npu_heat_all_after < 0.95 * npu_heat_all_origin:
|
||||
change = 1
|
||||
|
||||
return change, per_layer_priority, np.array(
|
||||
new_global_deployment).tolist()
|
||||
771
vllm_npu/eplb/core/policy/policy_dynamic_ep_v2.py
Normal file
771
vllm_npu/eplb/core/policy/policy_dynamic_ep_v2.py
Normal file
@@ -0,0 +1,771 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
from abc import abstractmethod
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DynamicConfig:
|
||||
placement_policy = None
|
||||
|
||||
max_transferred_expert_per_layer = 100 # Maximum number of experts that can be migrated per layer on a single host
|
||||
ep_worldsize = 64 # Total number of dies across the entire cluster where experts are distributed
|
||||
num_die_per_host = 8 # Number of dies on each host machine
|
||||
|
||||
|
||||
class EplbPolicy:
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
self.config = config
|
||||
|
||||
@abstractmethod
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
"""
|
||||
Pass in the weights and return expert replication and placement under relevant constraints.
|
||||
INPUT:
|
||||
current_expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_workload = expert_table[layer0][rankId][expert_num_i]
|
||||
|
||||
RETURNED: (res, expert_table)
|
||||
res:
|
||||
1 -- table_changed
|
||||
0 -- not_changed
|
||||
|
||||
expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_num_i --- [0, MaxExpertPerRank]
|
||||
expertID = expert_table[layer0][rankId][expert_num_i]
|
||||
array_values:
|
||||
[0, 1, 2, 3, 248]
|
||||
[4, 5, 6, 7, 254]
|
||||
[8, 9, 10, 11, 71]
|
||||
...
|
||||
[252, 253, 254, 255, 0]
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DynamicTable:
|
||||
# workload_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: workload (heat) at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the workload (heat) of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
workload_table = None
|
||||
|
||||
# placement_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: physical expert ID at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the physical expert ID of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
placement_table = None
|
||||
|
||||
|
||||
class DynamicEplbV2(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
|
||||
@staticmethod
|
||||
def safe_divide(a, b):
|
||||
if b == 0:
|
||||
print("Division by zero is not allowed")
|
||||
return 0
|
||||
return a / b
|
||||
|
||||
@staticmethod
|
||||
def safe_exact_divide(a, b):
|
||||
if b == 0:
|
||||
print("Division by zero is not allowed")
|
||||
return 0
|
||||
return a // b
|
||||
|
||||
@staticmethod
|
||||
def safe_mod(a, b):
|
||||
if b == 0:
|
||||
print("Division by zero is not allowed")
|
||||
return 0
|
||||
return a % b
|
||||
|
||||
@staticmethod
|
||||
def add_redundant(current_expert_table, expert_workload,
|
||||
num_original_expert):
|
||||
layer_num, npu_num, experts_per_npu = expert_workload.shape
|
||||
workload_new = np.zeros((layer_num, num_original_expert))
|
||||
for layer_idx in range(layer_num):
|
||||
workload_dict: dict[int, int] = defaultdict(int)
|
||||
placement_layer = current_expert_table[layer_idx].copy()
|
||||
workload_layer = expert_workload[layer_idx].copy()
|
||||
for npu_idx in range(npu_num):
|
||||
for expert_idx in range(experts_per_npu):
|
||||
workload_dict[placement_layer[npu_idx][
|
||||
expert_idx]] += workload_layer[npu_idx][expert_idx]
|
||||
for expert_idx in range(num_original_expert):
|
||||
workload_new[layer_idx][expert_idx] = workload_dict[expert_idx]
|
||||
return workload_new
|
||||
|
||||
@staticmethod
|
||||
def get_redundant_num(npu_num, counts):
|
||||
redundant_num_each_npu: int = int(np.sum(counts - 1))
|
||||
return redundant_num_each_npu
|
||||
|
||||
@staticmethod
|
||||
def calculate_max_heat_per_layer(workload_table, layer_num):
|
||||
max_heat_per_layer: list[float] = []
|
||||
for layer_idx in range(layer_num):
|
||||
npu_heats_now = np.sum(workload_table[layer_idx], axis=1)
|
||||
max_heat_per_layer.append(np.max(npu_heats_now))
|
||||
return max_heat_per_layer
|
||||
|
||||
def calculate_initial_imbalance(self, global_deployment,
|
||||
new_layer_workloads):
|
||||
|
||||
device_num = global_deployment.shape[1]
|
||||
layer_imbalance = []
|
||||
expert_num = np.zeros_like(new_layer_workloads)
|
||||
for layer_id, layer in enumerate(global_deployment):
|
||||
for device in layer:
|
||||
for expert_id in device:
|
||||
expert_num[layer_id][expert_id] += 1
|
||||
|
||||
for layer_id, layer in enumerate(global_deployment):
|
||||
cur_layer_max_workload = 0
|
||||
total_workload = 0
|
||||
for box in layer:
|
||||
box_workload = 0
|
||||
for expert_id in box:
|
||||
update_workload = self.safe_divide(
|
||||
new_layer_workloads[layer_id][expert_id],
|
||||
expert_num[layer_id][expert_id])
|
||||
box_workload += update_workload
|
||||
total_workload += update_workload
|
||||
if cur_layer_max_workload < box_workload:
|
||||
cur_layer_max_workload = box_workload
|
||||
|
||||
cur_layer_imbalance = self.safe_divide(
|
||||
cur_layer_max_workload,
|
||||
(self.safe_divide(total_workload, device_num)))
|
||||
layer_imbalance.append(cur_layer_imbalance)
|
||||
|
||||
return layer_imbalance
|
||||
|
||||
def compute_redundant_assignments(self, base_experts,
|
||||
num_redundant_experts, num_experts):
|
||||
|
||||
redundant_assignments: list[list[int]] = [[]
|
||||
for _ in range(num_experts)]
|
||||
current_weights = base_experts.copy()
|
||||
|
||||
for i in range(num_redundant_experts):
|
||||
sorted_indices = np.argsort([w for _, w in current_weights],
|
||||
kind='stable')[::-1]
|
||||
sorted_weights = [current_weights[i] for i in sorted_indices]
|
||||
|
||||
target_expert = sorted_weights[0]
|
||||
expert_id, original_weight = target_expert
|
||||
|
||||
current_redundancy = len(redundant_assignments[expert_id])
|
||||
new_avg_weight = self.safe_divide(
|
||||
original_weight * (current_redundancy + 1),
|
||||
(current_redundancy + 2))
|
||||
|
||||
redundant_assignments[expert_id].append(num_experts + i)
|
||||
current_weights[sorted_indices[0]] = (expert_id, new_avg_weight)
|
||||
|
||||
sorted_indices = np.argsort([w for _, w in current_weights],
|
||||
kind='stable')[::-1]
|
||||
sorted_weights = [current_weights[i] for i in sorted_indices]
|
||||
|
||||
return redundant_assignments, sorted_weights
|
||||
|
||||
def repeat_compute_redundant_assignments(self, layer_workloads, rendun_pos,
|
||||
num_experts, num_exist_expert,
|
||||
device_assignments, device_counts,
|
||||
expert_from_device,
|
||||
com_between_devices):
|
||||
|
||||
current_weights = np.zeros((num_experts, ), dtype='object')
|
||||
for expert_id, workload_weight in enumerate(layer_workloads):
|
||||
current_weights[expert_id] = (expert_id, workload_weight)
|
||||
|
||||
devices_with_slots = []
|
||||
for device_id, device_rendun_pos in enumerate(rendun_pos):
|
||||
if len(device_rendun_pos) != 0:
|
||||
devices_with_slots.append(device_id)
|
||||
|
||||
while devices_with_slots:
|
||||
sorted_indices = np.argsort([w for _, w in current_weights],
|
||||
kind='stable')[::-1]
|
||||
sorted_weights = [current_weights[i] for i in sorted_indices]
|
||||
|
||||
for index, target_weight in enumerate(sorted_weights):
|
||||
expert_id, original_weight = target_weight
|
||||
if original_weight == -1:
|
||||
print("Error:Redundant expert failure re-occurred")
|
||||
redundancy_successful = True
|
||||
break
|
||||
redundancy_successful = False
|
||||
for cur_device_id in devices_with_slots:
|
||||
if expert_id not in device_assignments[cur_device_id]:
|
||||
pos = rendun_pos[cur_device_id].pop()
|
||||
if len(rendun_pos[cur_device_id]) == 0:
|
||||
devices_with_slots = [
|
||||
device_id for device_id in devices_with_slots
|
||||
if device_id != cur_device_id
|
||||
]
|
||||
device_assignments[cur_device_id][pos] = expert_id
|
||||
device_counts[cur_device_id] += 1
|
||||
communication_box_index = expert_from_device[expert_id]
|
||||
com_between_devices[cur_device_id][
|
||||
communication_box_index] = expert_id
|
||||
new_weight = self.safe_divide(
|
||||
(original_weight * num_exist_expert[expert_id]),
|
||||
(num_exist_expert[expert_id] + 1))
|
||||
sorted_weights[index] = (expert_id, new_weight)
|
||||
num_exist_expert[expert_id] += 1
|
||||
redundancy_successful = True
|
||||
break
|
||||
if redundancy_successful:
|
||||
break
|
||||
|
||||
sorted_indices = np.argsort([id for id, _ in sorted_weights],
|
||||
kind='stable')
|
||||
sorted_weights = [sorted_weights[i][1] for i in sorted_indices]
|
||||
|
||||
return sorted_weights, device_assignments, device_counts, com_between_devices
|
||||
|
||||
@staticmethod
|
||||
def prepare_expert_list(base_experts, redundant_assignments,
|
||||
num_redundant_experts):
|
||||
redundant_expert_list = np.empty(num_redundant_experts, dtype=object)
|
||||
|
||||
index = 0
|
||||
num_experts = len(redundant_assignments)
|
||||
for expert_id in range(num_experts):
|
||||
for _ in redundant_assignments[expert_id]:
|
||||
redundant_expert_list[index] = (expert_id,
|
||||
next(w
|
||||
for eid, w in base_experts
|
||||
if eid == expert_id))
|
||||
index += 1
|
||||
|
||||
sorted_indices = np.argsort([w for _, w in redundant_expert_list],
|
||||
kind='stable')[::-1]
|
||||
return [redundant_expert_list[i] for i in sorted_indices]
|
||||
|
||||
@staticmethod
|
||||
def non_redundant_expert_information(origin_deployment, updated_weights,
|
||||
rendun_pos):
|
||||
|
||||
device_num = len(origin_deployment)
|
||||
num_experts_per_device = origin_deployment.shape[1]
|
||||
device_assignments = [[-1 for _ in range(num_experts_per_device)]
|
||||
for _ in range(device_num)]
|
||||
device_weights = [[0 for _ in range(num_experts_per_device)]
|
||||
for _ in range(device_num)]
|
||||
device_loads = [0] * device_num
|
||||
device_counts = [0] * device_num
|
||||
|
||||
for device_id, device in enumerate(origin_deployment):
|
||||
for index, expert_id in enumerate(device):
|
||||
if index in rendun_pos[device_id]:
|
||||
continue
|
||||
device_assignments[device_id][index] = expert_id
|
||||
cur_weight = next(
|
||||
weight for expert_id_of_weight, weight in updated_weights
|
||||
if expert_id_of_weight == expert_id)
|
||||
device_weights[device_id][index] = cur_weight
|
||||
device_loads[device_id] += cur_weight
|
||||
device_counts[device_id] += 1
|
||||
|
||||
return device_assignments, device_weights, device_loads, device_counts
|
||||
|
||||
def recomputing_initial_weight(self, layer_workloads, device_assignments):
|
||||
num_all_experts = [0] * len(layer_workloads)
|
||||
for device in device_assignments:
|
||||
for expert_id in device:
|
||||
if expert_id != -1:
|
||||
num_all_experts[expert_id] += 1
|
||||
|
||||
cur_layer_workload = []
|
||||
for expert_id, weight in enumerate(layer_workloads):
|
||||
if num_all_experts[expert_id] == 0:
|
||||
cur_layer_workload.append(-1)
|
||||
else:
|
||||
cur_layer_workload.append(
|
||||
self.safe_divide(weight, num_all_experts[expert_id]))
|
||||
|
||||
return cur_layer_workload, num_all_experts
|
||||
|
||||
def distribute_redun_experts(self, layer_workloads, device_assignments,
|
||||
device_weights, device_loads, device_counts,
|
||||
redundant_expert_list, expert_from_device,
|
||||
num_experts, rendun_pos):
|
||||
|
||||
num_devices = len(device_assignments)
|
||||
com_between_devices: list[dict[int,
|
||||
int]] = [{} for _ in range(num_devices)]
|
||||
|
||||
for expert_id, weight in redundant_expert_list:
|
||||
candidate = -1
|
||||
for dev_id in range(num_devices):
|
||||
if len(rendun_pos[dev_id]) == 0:
|
||||
continue
|
||||
if expert_id in device_assignments[dev_id]:
|
||||
continue
|
||||
if candidate == -1 or device_loads[dev_id] < device_loads[
|
||||
candidate]:
|
||||
candidate = dev_id
|
||||
if candidate != -1:
|
||||
pos = rendun_pos[candidate].pop()
|
||||
device_assignments[candidate][pos] = expert_id
|
||||
device_weights[candidate][pos] = weight
|
||||
device_loads[candidate] += weight
|
||||
device_counts[candidate] += 1
|
||||
|
||||
communication_box_index = expert_from_device[expert_id]
|
||||
com_between_devices[candidate][
|
||||
communication_box_index] = expert_id
|
||||
|
||||
if any(sublist for sublist in rendun_pos):
|
||||
cur_layer_workload, num_exist_expert = self.recomputing_initial_weight(
|
||||
layer_workloads, device_assignments)
|
||||
|
||||
update_workload, device_assignments, device_counts, com_between_devices = self.repeat_compute_redundant_assignments(
|
||||
cur_layer_workload, rendun_pos, num_experts, num_exist_expert,
|
||||
device_assignments, device_loads, expert_from_device,
|
||||
com_between_devices)
|
||||
|
||||
device_loads = [0] * len(device_counts)
|
||||
for device_id, device in enumerate(device_assignments):
|
||||
for index, expert_id in enumerate(device):
|
||||
device_weights[device_id][index] = update_workload[
|
||||
expert_id]
|
||||
device_loads[device_id] += update_workload[expert_id]
|
||||
|
||||
return device_assignments, device_weights, device_loads, device_counts, com_between_devices
|
||||
|
||||
def redundancy_again(self, layer_workloads, origin_weights,
|
||||
origin_deployment, expert_from_device, num_node,
|
||||
is_node_redundant, rendun_pos):
|
||||
|
||||
num_experts = len(origin_weights)
|
||||
if is_node_redundant:
|
||||
num_experts = num_experts * num_node
|
||||
|
||||
num_redundant_experts = 0
|
||||
for rank_empty_pos in rendun_pos:
|
||||
num_redundant_experts += len(rank_empty_pos)
|
||||
|
||||
redundant_assignments, updated_weights = self.compute_redundant_assignments(
|
||||
origin_weights, num_redundant_experts, num_experts)
|
||||
|
||||
redundant_expert_list = self.prepare_expert_list(
|
||||
updated_weights, redundant_assignments, num_redundant_experts)
|
||||
|
||||
device_assignments, device_weights, device_loads, device_counts = self.non_redundant_expert_information(
|
||||
origin_deployment, updated_weights, rendun_pos)
|
||||
|
||||
device_assignments, device_weights, device_loads, device_counts, com_between_devices = self.distribute_redun_experts(
|
||||
layer_workloads, device_assignments, device_weights, device_loads,
|
||||
device_counts, redundant_expert_list, expert_from_device,
|
||||
num_experts, rendun_pos)
|
||||
|
||||
return device_assignments, device_weights, device_loads, device_counts, com_between_devices
|
||||
|
||||
@staticmethod
|
||||
def generate_allocation_report(device_assignments, device_weights,
|
||||
device_loads, device_counts):
|
||||
|
||||
report = []
|
||||
max_load = 0.0
|
||||
|
||||
for dev_id in range(len(device_assignments)):
|
||||
current_load = device_loads[dev_id]
|
||||
max_load = max(max_load, current_load)
|
||||
|
||||
report.append({
|
||||
"device_id": dev_id + 1,
|
||||
"assigned_experts": device_assignments[dev_id],
|
||||
"expert_weights": device_weights[dev_id],
|
||||
"total_load": current_load,
|
||||
"expert_count": device_counts[dev_id]
|
||||
})
|
||||
|
||||
return report, max_load
|
||||
|
||||
@staticmethod
|
||||
def exchange_expert(cur_exchange_index, next_exchange_index, cur_device_id,
|
||||
next_device_id, cur_layer_result, com_between_devices):
|
||||
|
||||
cur_device_deployment = cur_layer_result[cur_device_id][
|
||||
'assigned_experts']
|
||||
next_device_deployment = cur_layer_result[next_device_id][
|
||||
'assigned_experts']
|
||||
|
||||
cur_device_weight = cur_layer_result[cur_device_id]['expert_weights']
|
||||
next_device_weight = cur_layer_result[next_device_id]['expert_weights']
|
||||
|
||||
cur_expert_id = cur_device_deployment[cur_exchange_index]
|
||||
next_expert_id = next_device_deployment[next_exchange_index]
|
||||
cur_device_deployment[cur_exchange_index] = next_expert_id
|
||||
next_device_deployment[next_exchange_index] = cur_expert_id
|
||||
|
||||
cur_expert_weight = cur_device_weight[cur_exchange_index]
|
||||
next_expert_weight = next_device_weight[next_exchange_index]
|
||||
cur_device_weight[cur_exchange_index] = next_expert_weight
|
||||
next_device_weight[next_exchange_index] = cur_expert_weight
|
||||
|
||||
cur_layer_result[cur_device_id][
|
||||
'total_load'] += next_expert_weight - cur_expert_weight
|
||||
cur_layer_result[next_device_id][
|
||||
'total_load'] += cur_expert_weight - next_expert_weight
|
||||
|
||||
com_between_devices[cur_device_id][next_device_id] = next_expert_id
|
||||
com_between_devices[next_device_id][cur_device_id] = cur_expert_id
|
||||
|
||||
def redundant_expert_deployment(self, layer_workloads, original_deployment,
|
||||
expert_from_device, node_num,
|
||||
is_node_redundant, rendun_pos):
|
||||
device_num, per_device_expert_num = original_deployment.shape
|
||||
route_expert_num = layer_workloads.shape[0]
|
||||
per_node_device_num = self.safe_exact_divide(device_num, node_num)
|
||||
per_node_route_expert_num = per_node_device_num * (
|
||||
per_device_expert_num - 1)
|
||||
|
||||
weights = np.zeros((route_expert_num, ), dtype='object')
|
||||
for expert_id, workload_weight in enumerate(layer_workloads):
|
||||
weights[expert_id] = (expert_id, workload_weight)
|
||||
|
||||
if is_node_redundant:
|
||||
|
||||
device_assignments = []
|
||||
device_weights = []
|
||||
device_loads = []
|
||||
device_counts = []
|
||||
com_between_devices = []
|
||||
|
||||
for node_id in range(node_num):
|
||||
cur_node_weights = weights[node_id *
|
||||
per_node_route_expert_num:(node_id +
|
||||
1) *
|
||||
per_node_route_expert_num]
|
||||
cur_original_deployment = original_deployment[
|
||||
node_id * per_node_device_num:(node_id + 1) *
|
||||
per_node_device_num]
|
||||
|
||||
cur_node_rendun_pos = rendun_pos[node_id *
|
||||
per_node_device_num:(node_id +
|
||||
1) *
|
||||
per_node_device_num]
|
||||
|
||||
cur_device_assignments, cur_device_weights, cur_device_loads, cur_device_counts, cur_com_between_devices = self.redundancy_again(
|
||||
layer_workloads, cur_node_weights, cur_original_deployment,
|
||||
expert_from_device, node_num, is_node_redundant,
|
||||
cur_node_rendun_pos)
|
||||
device_assignments += cur_device_assignments
|
||||
device_weights += cur_device_weights
|
||||
device_loads += cur_device_loads
|
||||
device_counts += cur_device_counts
|
||||
com_between_devices += cur_com_between_devices
|
||||
|
||||
else:
|
||||
device_assignments, device_weights, device_loads, device_counts, com_between_devices = self.redundancy_again(
|
||||
layer_workloads, weights, original_deployment,
|
||||
expert_from_device, node_num, is_node_redundant, rendun_pos)
|
||||
report, max_load = self.generate_allocation_report(
|
||||
device_assignments, device_weights, device_loads, device_counts)
|
||||
|
||||
return report, max_load, com_between_devices
|
||||
|
||||
@staticmethod
|
||||
def two_device_exchange_experts(cur_device_result, exchange_device_result,
|
||||
cur_exchanged_expert_id,
|
||||
next_exchanged_expert_id, ave_workload,
|
||||
increment, num_redundancy_expert):
|
||||
|
||||
cur_device_weight = cur_device_result['expert_weights']
|
||||
next_device_weight = exchange_device_result['expert_weights']
|
||||
|
||||
cur_device_expert_id = cur_device_result['assigned_experts']
|
||||
next_device_expert_id = exchange_device_result['assigned_experts']
|
||||
|
||||
cur_device_total_weight = cur_device_result['total_load']
|
||||
next_device_total_weight = exchange_device_result['total_load']
|
||||
max_weight = max(cur_device_total_weight, next_device_total_weight)
|
||||
|
||||
cur_exchange_index = -1
|
||||
next_exchange_index = -1
|
||||
|
||||
for index, weight in enumerate(cur_device_weight):
|
||||
for next_index, next_weight in enumerate(next_device_weight):
|
||||
change_flag = True
|
||||
if (cur_device_expert_id[index] in next_device_expert_id
|
||||
or next_device_expert_id[next_index]
|
||||
in cur_device_expert_id):
|
||||
change_flag = False
|
||||
if (cur_device_expert_id[index] not in cur_exchanged_expert_id
|
||||
) and (next_device_expert_id[next_index]
|
||||
not in next_exchanged_expert_id) and change_flag:
|
||||
|
||||
cur_total_weight_after_exchange = cur_device_total_weight - weight + next_weight
|
||||
next_total_weight_after_exchange = next_device_total_weight - next_weight + weight
|
||||
exchange_max_weight = max(
|
||||
cur_total_weight_after_exchange,
|
||||
next_total_weight_after_exchange)
|
||||
if exchange_max_weight < max_weight and (
|
||||
max_weight -
|
||||
exchange_max_weight) >= (ave_workload * increment):
|
||||
max_weight = exchange_max_weight
|
||||
cur_exchange_index = index
|
||||
next_exchange_index = next_index
|
||||
|
||||
return cur_exchange_index, next_exchange_index
|
||||
|
||||
def expert_exchange_between_devices(self,
|
||||
ave_workload,
|
||||
increment,
|
||||
cur_layer_result,
|
||||
com_between_devices,
|
||||
num_redundancy_expert,
|
||||
node_idx=0,
|
||||
per_node_device_num=0,
|
||||
is_node_redundant=False):
|
||||
|
||||
if is_node_redundant:
|
||||
cur_devices_result = cur_layer_result[node_idx *
|
||||
per_node_device_num:
|
||||
(node_idx + 1) *
|
||||
per_node_device_num]
|
||||
else:
|
||||
cur_devices_result = cur_layer_result
|
||||
|
||||
devices_total_weight = []
|
||||
for device in cur_devices_result:
|
||||
devices_total_weight.append(
|
||||
(device['total_load'], device['device_id'] - 1))
|
||||
|
||||
exchange_frequency = 100
|
||||
while exchange_frequency > 0:
|
||||
exchange_frequency -= 1
|
||||
devices_total_weight.sort(key=lambda x: x[0])
|
||||
max_weight_device_id = devices_total_weight[-1][1]
|
||||
exchange = False
|
||||
for index in range(0, len(devices_total_weight) - 1):
|
||||
min_weight_device_id = devices_total_weight[index][1]
|
||||
if min_weight_device_id not in com_between_devices[
|
||||
max_weight_device_id]:
|
||||
cur_exchanged_expert_id = list(
|
||||
com_between_devices[max_weight_device_id].values())
|
||||
next_exchanged_expert_id = list(
|
||||
com_between_devices[min_weight_device_id].values())
|
||||
|
||||
cur_exchange_index, next_exchange_index = self.two_device_exchange_experts(
|
||||
cur_layer_result[max_weight_device_id],
|
||||
cur_layer_result[min_weight_device_id],
|
||||
cur_exchanged_expert_id, next_exchanged_expert_id,
|
||||
ave_workload, increment, num_redundancy_expert)
|
||||
|
||||
if cur_exchange_index != -1:
|
||||
self.exchange_expert(cur_exchange_index,
|
||||
next_exchange_index,
|
||||
max_weight_device_id,
|
||||
min_weight_device_id,
|
||||
cur_layer_result,
|
||||
com_between_devices)
|
||||
|
||||
devices_total_weight[-1] = (
|
||||
cur_layer_result[max_weight_device_id]
|
||||
['total_load'], max_weight_device_id)
|
||||
devices_total_weight[index] = (
|
||||
cur_layer_result[min_weight_device_id]
|
||||
['total_load'], min_weight_device_id)
|
||||
exchange = True
|
||||
break
|
||||
|
||||
if not exchange:
|
||||
break
|
||||
|
||||
def exchange_experts(self, layer_result, layer_com_between_devices,
|
||||
num_nodes, device_num, is_node_redundant,
|
||||
ave_workload, increment, num_redundancy_expert,
|
||||
org_deployment):
|
||||
|
||||
global_deployment = []
|
||||
|
||||
if is_node_redundant:
|
||||
per_node_device_num = self.safe_exact_divide(device_num, num_nodes)
|
||||
for node_idx in range(num_nodes):
|
||||
self.expert_exchange_between_devices(
|
||||
ave_workload, increment, layer_result,
|
||||
layer_com_between_devices, num_redundancy_expert, node_idx,
|
||||
per_node_device_num, is_node_redundant)
|
||||
else:
|
||||
self.expert_exchange_between_devices(ave_workload, increment,
|
||||
layer_result,
|
||||
layer_com_between_devices,
|
||||
num_redundancy_expert)
|
||||
|
||||
max_workload = 0
|
||||
for box in layer_result:
|
||||
global_deployment.append(box['assigned_experts'])
|
||||
if max_workload < box['total_load']:
|
||||
max_workload = box['total_load']
|
||||
|
||||
global_deployment = np.array(global_deployment)
|
||||
|
||||
return global_deployment, max_workload
|
||||
|
||||
def count_elements(self, lst):
|
||||
count = 0
|
||||
for item in lst:
|
||||
if isinstance(item, list):
|
||||
count += self.count_elements(item)
|
||||
else:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
@staticmethod
|
||||
def constraint_expert_local_exchange(current_expert_table,
|
||||
global_deployment):
|
||||
for layer_id in range(len(global_deployment)):
|
||||
for card_id in range(len(global_deployment[layer_id])):
|
||||
current_list = [
|
||||
int(x) for x in current_expert_table[layer_id][card_id]
|
||||
]
|
||||
new_list = [
|
||||
int(x) for x in global_deployment[layer_id][card_id]
|
||||
]
|
||||
num = len(new_list)
|
||||
|
||||
new_index = [-1] * num
|
||||
new_result = [-1] * num
|
||||
remaining_elements = []
|
||||
|
||||
for i in range(num):
|
||||
flag = True
|
||||
for j in range(num):
|
||||
if new_list[i] == current_list[j] and new_index[
|
||||
j] == -1:
|
||||
new_index[j] = 0
|
||||
new_result[j] = current_list[j]
|
||||
flag = False
|
||||
break
|
||||
if flag:
|
||||
remaining_elements.append(new_list[i])
|
||||
|
||||
index = 0
|
||||
for k in range(num):
|
||||
if new_result[k] == -1:
|
||||
new_result[k] = remaining_elements[index]
|
||||
index += 1
|
||||
|
||||
global_deployment[layer_id][card_id] = new_result
|
||||
|
||||
return global_deployment
|
||||
|
||||
def rebalance_experts(self,
|
||||
current_expert_table,
|
||||
expert_workload,
|
||||
is_node_redundant=False,
|
||||
increment=0.01):
|
||||
info = DynamicTable()
|
||||
info.workload_table = expert_workload.numpy()
|
||||
info.placement_table = current_expert_table.numpy()
|
||||
assert info.workload_table is not None
|
||||
layer_num, num_npus, experts_per_npu = info.workload_table.shape
|
||||
expert_ids, counts = np.unique(info.placement_table[0],
|
||||
return_counts=True)
|
||||
num_redundancy_expert = self.get_redundant_num(num_npus, counts)
|
||||
num_original_expert = len(expert_ids)
|
||||
layer_workloads = self.add_redundant(info.placement_table,
|
||||
info.workload_table,
|
||||
num_original_expert)
|
||||
max_heat_per_layer_before = self.calculate_max_heat_per_layer(
|
||||
info.workload_table, layer_num)
|
||||
npu_heat_all_origin = sum(max_heat_per_layer_before)
|
||||
|
||||
num_node = self.safe_exact_divide(num_npus, 8)
|
||||
layer_num = layer_workloads.shape[0]
|
||||
expert_num = layer_workloads.shape[1]
|
||||
expert_from_device = np.zeros((layer_num, num_original_expert))
|
||||
|
||||
if num_original_expert != expert_num:
|
||||
raise ValueError(
|
||||
f"The number of original experts ({num_original_expert}) must match expert_num ({expert_num})"
|
||||
)
|
||||
|
||||
if num_npus <= 0:
|
||||
raise ValueError("The number of NPUs must be greater than 0")
|
||||
|
||||
if num_npus < num_redundancy_expert:
|
||||
raise ValueError(
|
||||
f"The number of NPUs ({num_npus}) must be greater than or equal to the number of redundant experts ({num_redundancy_expert})"
|
||||
)
|
||||
|
||||
global_deployment: list[list[list[int]]] = [[[]
|
||||
for _ in range(num_npus)]
|
||||
for _ in range(layer_num)]
|
||||
layer_initial_imbalance = self.calculate_initial_imbalance(
|
||||
info.placement_table, layer_workloads)
|
||||
max_heat_per_layer_after = np.zeros([layer_num])
|
||||
sum_num = 0
|
||||
for layer in range(layer_num):
|
||||
# print(f"Load imbalance ratio of layer {layer} under the new workload", layer_initial_imbalance[layer])
|
||||
if layer_initial_imbalance[layer] < 1.01:
|
||||
global_deployment[layer] = info.placement_table[layer]
|
||||
continue
|
||||
|
||||
ave_workload = self.safe_divide(np.sum(layer_workloads[layer]),
|
||||
num_npus)
|
||||
|
||||
rendun_pos: list[list[int]] = [[] for _ in range(num_npus)]
|
||||
existing_experts = set()
|
||||
for device_id, device in enumerate(info.placement_table[layer]):
|
||||
for index, expert_id in enumerate(device):
|
||||
if expert_id not in existing_experts:
|
||||
existing_experts.add(expert_id)
|
||||
expert_from_device[layer][expert_id] = device_id
|
||||
else:
|
||||
rendun_pos[device_id].append(index)
|
||||
|
||||
result, max_workload, com_between_devices = self.redundant_expert_deployment(
|
||||
layer_workloads[layer], info.placement_table[layer],
|
||||
expert_from_device[layer], num_node, is_node_redundant,
|
||||
rendun_pos)
|
||||
# print(layer, f"Imbalance Ratio after Redundancy Adjustment:", self.safe_divide(max_workload, ave_workload))
|
||||
|
||||
global_deployment[layer], new_max_workload = self.exchange_experts(
|
||||
result, com_between_devices, num_node, num_npus,
|
||||
is_node_redundant, ave_workload, increment,
|
||||
num_redundancy_expert, info.placement_table[layer])
|
||||
# print(layer, f"Imbalance Ratio after Swap Adjustment:", self.safe_divide(new_max_workload, ave_workload))
|
||||
|
||||
for device_id in range(num_npus):
|
||||
com_between_devices[device_id] = {
|
||||
key: value
|
||||
for key, value in com_between_devices[device_id].items()
|
||||
}
|
||||
sum_num += self.count_elements(com_between_devices[device_id])
|
||||
|
||||
max_heat_per_layer_after[layer] = max(
|
||||
result, key=lambda x: x['total_load'])['total_load']
|
||||
|
||||
layer_changed_ratio = []
|
||||
for layer_idx in range(layer_num):
|
||||
layer_changed_ratio.append(
|
||||
self.safe_divide(max_heat_per_layer_after[layer_idx],
|
||||
max_heat_per_layer_before[layer_idx]))
|
||||
|
||||
per_layer_priority = np.argsort(layer_changed_ratio)
|
||||
npu_heat_all_after = sum(max_heat_per_layer_after)
|
||||
|
||||
change = 0
|
||||
if npu_heat_all_after < 0.95 * npu_heat_all_origin:
|
||||
change = 1
|
||||
|
||||
new_global_deployment = self.constraint_expert_local_exchange(
|
||||
current_expert_table, global_deployment)
|
||||
|
||||
return change, per_layer_priority, np.array(
|
||||
new_global_deployment).tolist()
|
||||
33
vllm_npu/eplb/core/policy/policy_factory.py
Normal file
33
vllm_npu/eplb/core/policy/policy_factory.py
Normal file
@@ -0,0 +1,33 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2023-2024. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this factory.
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
from .policy_dynamic_ep import DynamicEplb
|
||||
from .policy_dynamic_ep_v2 import DynamicEplbV2
|
||||
from .policy_flashlb import FlashLB
|
||||
from .policy_random import RandomLoadBalance
|
||||
|
||||
|
||||
class PolicyFactory:
|
||||
|
||||
@staticmethod
|
||||
def generate_policy(policy_type: int, config: DynamicConfig) -> EplbPolicy:
|
||||
policy = {
|
||||
# Constraint applying Dynamic EPLB policy V2:
|
||||
# If there exists redundant expert:
|
||||
# only one redundant expert can be placed in one NPU and its physical expert index must be 0
|
||||
|
||||
# Applying greedy d2d expert weight update composing
|
||||
0:
|
||||
RandomLoadBalance, # RandomLoadBalance: shuffle last physical expert on NPU 1 and 3
|
||||
1:
|
||||
DynamicEplb, # Dynamic EPLB policy: overall expert replacement based on current moe load
|
||||
2:
|
||||
DynamicEplbV2, # Dynamic EPLB policy V2: expert replacement with constrained number of expert shuffle
|
||||
3:
|
||||
FlashLB, # FlashLB EPLB policy: expert replacement based on Joint Optimization, Multi-Shot Enhancement and Incremental Adjustment
|
||||
}
|
||||
policy_class = policy.get(policy_type, RandomLoadBalance)
|
||||
policy_instance = policy_class(config)
|
||||
if policy_type == 3:
|
||||
policy_instance.warm_up()
|
||||
return policy_instance
|
||||
651
vllm_npu/eplb/core/policy/policy_flashlb.py
Normal file
651
vllm_npu/eplb/core/policy/policy_flashlb.py
Normal file
@@ -0,0 +1,651 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from numba import njit # type: ignore
|
||||
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
|
||||
numba_logger = logging.getLogger("numba")
|
||||
numba_logger.setLevel(logging.WARNING)
|
||||
|
||||
|
||||
@njit
|
||||
def compute_piece_counts(X, P, stage_weights):
|
||||
n_stage, N = X.shape
|
||||
S = P - N
|
||||
pieces = np.ones(N, dtype=np.int32)
|
||||
unit = X / pieces # unit[i, j] = X[i, j] / pieces[j]
|
||||
|
||||
for _ in range(S):
|
||||
deltas = np.zeros(N, dtype=np.float32)
|
||||
for i in range(n_stage):
|
||||
# Find top1 and top2
|
||||
idx1 = -1
|
||||
idx2 = -1
|
||||
val1 = -1.0
|
||||
val2 = -1.0
|
||||
for j in range(N):
|
||||
v = unit[i, j]
|
||||
if v > val1:
|
||||
val2 = val1
|
||||
idx2 = idx1
|
||||
val1 = v
|
||||
idx1 = j
|
||||
elif v > val2:
|
||||
val2 = v
|
||||
idx2 = j
|
||||
|
||||
origin = unit[i, idx1]
|
||||
secv = unit[i, idx2]
|
||||
alt = X[i, idx1] / (pieces[idx1] + 1)
|
||||
delta = origin - (alt if alt > secv else secv)
|
||||
deltas[idx1] += delta * stage_weights[i] if np.any(
|
||||
delta) != 0 else stage_weights[i]
|
||||
|
||||
max_idx = np.argmax(deltas)
|
||||
pieces[max_idx] += 1
|
||||
for i in range(n_stage):
|
||||
unit[i, max_idx] = X[i, max_idx] / pieces[max_idx]
|
||||
|
||||
# Compute max load
|
||||
max_load = 0.0
|
||||
for j in range(N):
|
||||
total = 0.0
|
||||
for i in range(n_stage):
|
||||
total += unit[i, j]
|
||||
if total > max_load:
|
||||
max_load = total
|
||||
|
||||
return pieces
|
||||
|
||||
|
||||
@njit
|
||||
def jsq_placement(X, pieces, M, stage_weights):
|
||||
n_stage, N = X.shape
|
||||
total_piece = pieces.sum()
|
||||
num_per_group = total_piece // M
|
||||
|
||||
# 1. Compute unit_hotness
|
||||
unit_hotness = np.empty((n_stage, N), dtype=np.float32)
|
||||
for i in range(N):
|
||||
if pieces[i] > 0:
|
||||
for s in range(n_stage):
|
||||
unit_hotness[s, i] = X[s, i] / pieces[i]
|
||||
else:
|
||||
for s in range(n_stage):
|
||||
unit_hotness[s, i] = 0.0
|
||||
|
||||
# 2. Sort by total hotness
|
||||
scores = np.zeros(N, dtype=np.float32)
|
||||
for i in range(N):
|
||||
for s in range(n_stage):
|
||||
scores[i] += unit_hotness[s, i]
|
||||
idx = np.argsort(-scores)
|
||||
|
||||
# 3. Initialization
|
||||
loads = np.zeros((n_stage, M), dtype=np.float32)
|
||||
dev_phy_exp_n = np.zeros(M, dtype=np.int32)
|
||||
deployment = -np.ones((M, num_per_group), dtype=np.int32)
|
||||
dep_ptr = np.zeros(M, dtype=np.int32)
|
||||
|
||||
# 4. Main loop
|
||||
for t in range(N):
|
||||
i = idx[t]
|
||||
used_device = list()
|
||||
for _ in range(pieces[i]):
|
||||
# 4.1 Construct w vector
|
||||
w = np.empty(n_stage, dtype=np.float32)
|
||||
for s in range(n_stage):
|
||||
w[s] = unit_hotness[s, i]
|
||||
|
||||
# 4.2 Compute stage-level maximum load
|
||||
stage_max = np.empty(n_stage, dtype=np.float32)
|
||||
for s in range(n_stage):
|
||||
max_val = loads[s, 0]
|
||||
for k in range(1, M):
|
||||
if loads[s, k] > max_val:
|
||||
max_val = loads[s, k]
|
||||
stage_max[s] = max_val
|
||||
|
||||
# 4.3 Compute denominator
|
||||
denom = np.empty(n_stage, dtype=np.float32)
|
||||
for s in range(n_stage):
|
||||
sum_tmp = 0.0
|
||||
for j in range(M):
|
||||
sum_tmp += loads[s, j] + w[s]
|
||||
denom[s] = sum_tmp / M + 1e-2
|
||||
|
||||
# 4.4 Find best device j
|
||||
best_j = -1
|
||||
best_val = 1e30
|
||||
for j in range(M):
|
||||
if dev_phy_exp_n[j] >= num_per_group:
|
||||
continue
|
||||
if j in used_device:
|
||||
continue
|
||||
score = 0.0
|
||||
for s in range(n_stage):
|
||||
tmp_sj = loads[s, j] + w[s]
|
||||
numer_sj = tmp_sj if tmp_sj > stage_max[s] else stage_max[s]
|
||||
score += stage_weights[s] * (numer_sj / denom[s])
|
||||
if score < best_val:
|
||||
best_val = score
|
||||
best_j = j
|
||||
if best_j == -1:
|
||||
continue
|
||||
|
||||
used_device.append(best_j)
|
||||
|
||||
# 4.5 Update status
|
||||
for s in range(n_stage):
|
||||
loads[s, best_j] += w[s]
|
||||
ptr = dep_ptr[best_j]
|
||||
deployment[best_j, ptr] = i
|
||||
dep_ptr[best_j] += 1
|
||||
dev_phy_exp_n[best_j] += 1
|
||||
|
||||
# Handle remaining -1 values: fill with random elements from range(N) not in current column
|
||||
for rank in range(M):
|
||||
for col in range(num_per_group):
|
||||
if deployment[rank, col] == -1:
|
||||
# Get elements already in current column
|
||||
current_rank_elements = set(deployment[rank, :])
|
||||
# Filter elements from range(N) not in current column
|
||||
available = [
|
||||
x for x in range(N) if x not in current_rank_elements
|
||||
]
|
||||
# Randomly select an available element to fill
|
||||
if len(available) > 0:
|
||||
rand_idx = np.random.randint(0, len(available))
|
||||
deployment[rank, col] = available[rand_idx]
|
||||
elif N > 0:
|
||||
# All unique experts are already in this rank's column, so we can pick any expert randomly.
|
||||
deployment[rank, col] = np.random.randint(0, N)
|
||||
|
||||
return deployment
|
||||
|
||||
|
||||
@njit
|
||||
def slice_values(X, pieces):
|
||||
total_len = 0
|
||||
for i in range(X.shape[0]):
|
||||
total_len += pieces[i]
|
||||
result = np.empty(total_len, dtype=np.float32)
|
||||
idx = 0
|
||||
for i in range(X.shape[0]):
|
||||
val = X[i] / pieces[i]
|
||||
for _ in range(pieces[i]):
|
||||
result[idx] = val
|
||||
idx += 1
|
||||
return result
|
||||
|
||||
|
||||
@njit
|
||||
def group_based_adaptive_bloating_kernel(X, P, M, simulated_pieces,
|
||||
simulated_deployment, stage_weights):
|
||||
n_stage, N = X.shape
|
||||
num_group = P // M
|
||||
|
||||
X_all = np.zeros(N, dtype=np.float32)
|
||||
for i in range(n_stage):
|
||||
for j in range(N):
|
||||
X_all[j] += X[i, j]
|
||||
|
||||
sort_idx = np.argsort(np.negative(X_all))
|
||||
X_sorted = X[:, sort_idx]
|
||||
|
||||
unit_load = np.empty(N, dtype=np.float32)
|
||||
for j in range(N):
|
||||
unit_load[j] = X_all[j] / simulated_pieces[j]
|
||||
|
||||
flat_deployment = simulated_deployment.reshape(-1)
|
||||
simulated_load = np.zeros(M, dtype=np.float32)
|
||||
for i in range(flat_deployment.shape[0]):
|
||||
simulated_load[i // (flat_deployment.shape[0] //
|
||||
M)] += unit_load[flat_deployment[i]]
|
||||
|
||||
slice_vals = slice_values(X_all, simulated_pieces)
|
||||
sorted_slices = np.sort(slice_vals)[::-1]
|
||||
simulated_slopes = (sorted_slices[:-M + 1] - sorted_slices[M - 1:]) / M
|
||||
|
||||
cumulative_slices_used = np.zeros(N, dtype=np.int32)
|
||||
acc = 0
|
||||
for i in range(N):
|
||||
acc += simulated_pieces[sort_idx[i]]
|
||||
cumulative_slices_used[i] = acc
|
||||
|
||||
group_boundary_indices = np.zeros(num_group, dtype=np.int32)
|
||||
for i in range(1, num_group + 1):
|
||||
for j in range(N):
|
||||
if cumulative_slices_used[j] >= i * M:
|
||||
group_boundary_indices[i - 1] = j
|
||||
break
|
||||
|
||||
slices_used_per_group = np.zeros(num_group, dtype=np.int32)
|
||||
slices_used_per_group[0] = group_boundary_indices[0]
|
||||
for i in range(1, num_group):
|
||||
slices_used_per_group[
|
||||
i] = group_boundary_indices[i] - group_boundary_indices[i - 1]
|
||||
slices_used_per_group = M - slices_used_per_group
|
||||
|
||||
loads = np.zeros(M, dtype=np.float32)
|
||||
pieces = np.zeros(N, dtype=np.int32)
|
||||
num_remain_slice = P - N
|
||||
current_idx = 0
|
||||
|
||||
for g in range(num_group):
|
||||
window = X_sorted[:, current_idx:current_idx + 2 * M]
|
||||
low = max(0, current_idx + M - N)
|
||||
high = min(num_remain_slice, M - 1)
|
||||
|
||||
while (high - low) > 1:
|
||||
mid = int((high + low) // 2)
|
||||
keep = M - mid
|
||||
current_group = window[:, :keep]
|
||||
current_pieces = compute_piece_counts(current_group, M,
|
||||
stage_weights)
|
||||
current_pieces = np.maximum(current_pieces, 1)
|
||||
current_slice = slice_values(current_group.sum(0), current_pieces)
|
||||
current_slice_sorted = np.sort(current_slice)
|
||||
current_loads = loads + current_slice_sorted
|
||||
current_max: np.float32 = np.max(current_loads)
|
||||
current_min: np.float32 = np.min(current_loads)
|
||||
current_slope = (current_max - current_min) / M
|
||||
next_slope: np.float32 = np.max(simulated_slopes[current_idx +
|
||||
keep:])
|
||||
|
||||
if abs(current_slope) > abs(next_slope):
|
||||
low = mid
|
||||
else:
|
||||
high = mid
|
||||
|
||||
S = high
|
||||
keep = M - S
|
||||
current_group = window[:, :keep]
|
||||
current_pieces = compute_piece_counts(current_group, M, stage_weights)
|
||||
|
||||
for i in range(keep):
|
||||
pieces[sort_idx[current_idx + i]] = current_pieces[i]
|
||||
|
||||
current_slice = slice_values(current_group.sum(0), current_pieces)
|
||||
current_slice_sorted = np.sort(current_slice)
|
||||
loads += current_slice_sorted
|
||||
loads = np.sort(loads)[::-1]
|
||||
|
||||
current_idx += keep
|
||||
num_remain_slice -= S
|
||||
|
||||
return pieces
|
||||
|
||||
|
||||
@njit
|
||||
def compute_objective(deployment, X, pieces):
|
||||
M, P = deployment.shape
|
||||
loads = np.zeros(M)
|
||||
|
||||
for i in range(M):
|
||||
for j in range(P):
|
||||
expert = deployment[i, j]
|
||||
if pieces[expert] == 0:
|
||||
continue
|
||||
loads[i] += X[expert] / pieces[expert]
|
||||
|
||||
mean_load = np.mean(loads)
|
||||
max_load: np.float32 = np.max(loads)
|
||||
obj = max_load / mean_load
|
||||
return obj, loads
|
||||
|
||||
|
||||
@njit
|
||||
def auto_fix_new_placement(old_placement, new_placement):
|
||||
"""
|
||||
Adjust the new_placement matrix to ensure elements (including duplicates) that exist in both
|
||||
old_placement and new_placement remain in their original positions from old_placement.
|
||||
New elements (unique to new_placement) will fill the remaining empty positions.
|
||||
|
||||
Args:
|
||||
old_placement: Old deployment matrix with shape (num_ranks, num_experts)
|
||||
new_placement: New deployment matrix to be fixed, must have the same shape as old_placement
|
||||
|
||||
Returns:
|
||||
fixed_new: adjusted version of the new_placement matrix
|
||||
"""
|
||||
num_ranks, num_experts = old_placement.shape
|
||||
fixed_new = np.empty_like(new_placement)
|
||||
|
||||
max_expert_old = old_placement.max() if num_experts > 0 else 0
|
||||
max_expert_new = new_placement.max() if num_experts > 0 else 0
|
||||
max_expert = max(max_expert_old, max_expert_new)
|
||||
|
||||
for rank_id in range(num_ranks):
|
||||
old_row = old_placement[rank_id]
|
||||
new_row = new_placement[rank_id]
|
||||
|
||||
index_array = np.full((max_expert + 1, num_experts),
|
||||
-1,
|
||||
dtype=np.int32)
|
||||
count_array = np.zeros(max_expert + 1, dtype=np.int32)
|
||||
|
||||
for idx in range(num_experts):
|
||||
val = old_row[idx]
|
||||
if val >= 0 and val <= max_expert:
|
||||
pos = count_array[val]
|
||||
index_array[val, pos] = idx
|
||||
count_array[val] += 1
|
||||
|
||||
old_counter = np.zeros(max_expert + 1, dtype=np.int32)
|
||||
for idx in range(num_experts):
|
||||
val = old_row[idx]
|
||||
if val >= 0 and val <= max_expert:
|
||||
old_counter[val] += 1
|
||||
|
||||
retain_elements = np.empty(num_experts, dtype=new_placement.dtype)
|
||||
new_elements = np.empty(num_experts, dtype=new_placement.dtype)
|
||||
retain_ptr = 0
|
||||
new_ptr = 0
|
||||
|
||||
for val in new_row:
|
||||
if val >= 0 and val <= max_expert and old_counter[val] > 0:
|
||||
retain_elements[retain_ptr] = val
|
||||
retain_ptr += 1
|
||||
old_counter[val] -= 1
|
||||
else:
|
||||
new_elements[new_ptr] = val
|
||||
new_ptr += 1
|
||||
|
||||
current_fixed = np.full(num_experts, -1, dtype=new_placement.dtype)
|
||||
|
||||
for i in range(retain_ptr):
|
||||
val = retain_elements[i]
|
||||
if val >= 0 and val <= max_expert:
|
||||
pos = count_array[val] - 1
|
||||
if pos >= 0:
|
||||
idx = index_array[val, pos]
|
||||
current_fixed[idx] = val
|
||||
count_array[val] -= 1
|
||||
|
||||
empty_indices = np.empty(num_experts, dtype=np.int32)
|
||||
empty_ptr = 0
|
||||
for idx in range(num_experts):
|
||||
if current_fixed[idx] == -1:
|
||||
empty_indices[empty_ptr] = idx
|
||||
empty_ptr += 1
|
||||
|
||||
for i in range(new_ptr):
|
||||
if i < empty_ptr:
|
||||
current_fixed[empty_indices[i]] = new_elements[i]
|
||||
|
||||
fixed_new[rank_id] = current_fixed
|
||||
|
||||
return fixed_new
|
||||
|
||||
|
||||
class FlashLB(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
self.par_history: Dict[int, float] = {}
|
||||
self.hotness_window: Dict[int, deque[float]] = {}
|
||||
self.max_stage_window = (config.max_stage_window if hasattr(
|
||||
config, "max_stage_window") else 1)
|
||||
self.buffer_expert_layer_num = (
|
||||
config.buffer_expert_layer_num if hasattr(
|
||||
config, "buffer_expert_layer_num") else 58)
|
||||
self.threshold_ratio = (config.threshold_ratio if hasattr(
|
||||
config, "threshold_ratio") else 0)
|
||||
|
||||
def compute_expert_hotness(self, num_of_expert: int,
|
||||
deployment: np.ndarray, rank_load: np.ndarray):
|
||||
hotness = np.zeros(num_of_expert, dtype=rank_load.dtype)
|
||||
deployment_flat = deployment.ravel()
|
||||
rank_load_flat = rank_load.ravel()
|
||||
np.add.at(hotness, deployment_flat, rank_load_flat)
|
||||
return hotness
|
||||
|
||||
def compute_rank_load(self, deployment: np.ndarray, hotness: np.ndarray):
|
||||
n_stage, N = hotness.shape
|
||||
if np.any(deployment < 0):
|
||||
print(f"Invalid deployment with negative values: {deployment}")
|
||||
raise ValueError("Deployment table contains negative values.")
|
||||
counts = np.bincount(deployment.reshape(-1), minlength=N)
|
||||
unit_hotness = np.divide(hotness,
|
||||
counts,
|
||||
out=np.zeros_like(hotness, dtype=float),
|
||||
where=counts != 0)
|
||||
stage_par = np.zeros(n_stage)
|
||||
for i in range(n_stage):
|
||||
stage_load = unit_hotness[i][deployment].sum(-1)
|
||||
stage_par[i] = stage_load.max() / stage_load.mean()
|
||||
return stage_par.mean()
|
||||
|
||||
def group_based_adaptive_bloating(self,
|
||||
X,
|
||||
P,
|
||||
M,
|
||||
stage_weights=None,
|
||||
recorsive=False):
|
||||
n_stage, N = X.shape
|
||||
if stage_weights is None:
|
||||
stage_weights = np.ones(n_stage, dtype=np.float32)
|
||||
|
||||
if recorsive:
|
||||
(
|
||||
simulated_deployment,
|
||||
simulated_pieces,
|
||||
) = self.group_based_adaptive_bloating(X,
|
||||
P,
|
||||
M,
|
||||
stage_weights,
|
||||
recorsive=False)
|
||||
else:
|
||||
simulated_pieces = compute_piece_counts(X, P, stage_weights)
|
||||
simulated_deployment = jsq_placement(X, simulated_pieces, M,
|
||||
stage_weights)
|
||||
|
||||
pieces = group_based_adaptive_bloating_kernel(
|
||||
X.astype(np.float32),
|
||||
P,
|
||||
M,
|
||||
simulated_pieces.astype(np.int32),
|
||||
simulated_deployment.astype(np.int32),
|
||||
stage_weights.astype(np.float32),
|
||||
)
|
||||
|
||||
deployment = jsq_placement(X, pieces, M, stage_weights)
|
||||
|
||||
X_all = X.sum(0)
|
||||
unit_load = np.divide(X_all,
|
||||
pieces,
|
||||
out=np.zeros_like(X_all, dtype=float),
|
||||
where=pieces != 0)
|
||||
load = unit_load[deployment].sum(-1)
|
||||
|
||||
sim_unit_load = X_all / simulated_pieces
|
||||
sim_load = sim_unit_load[simulated_deployment].sum(-1)
|
||||
|
||||
if load.max() > sim_load.max():
|
||||
return simulated_deployment, simulated_pieces
|
||||
return deployment, pieces
|
||||
|
||||
def need_update(self, current_par, layer_id=0):
|
||||
threshold = self.par_history.get(layer_id, 0.0)
|
||||
return current_par >= self.threshold_ratio * threshold
|
||||
|
||||
def compute_stage_weight(self, hotness):
|
||||
n_stage = hotness.shape[0]
|
||||
stage_weights = np.zeros(n_stage)
|
||||
for i in range(n_stage):
|
||||
stage_weights[i] = hotness[i].sum()
|
||||
|
||||
stage_weights = stage_weights / stage_weights.max()
|
||||
return stage_weights
|
||||
|
||||
def rebalance_layer(self, deployment, hotness, layer_id=0):
|
||||
num_rank, expert_per_rank = deployment.shape
|
||||
num_expert = np.unique(deployment.reshape(-1)).shape[0]
|
||||
num_of_redundant_expert = num_rank * expert_per_rank - num_expert
|
||||
|
||||
current_par = self.compute_rank_load(deployment, hotness)
|
||||
|
||||
if not self.need_update(current_par, layer_id):
|
||||
return deployment, current_par, current_par
|
||||
|
||||
stage_weights = self.compute_stage_weight(hotness)
|
||||
new_deployment, _ = self.group_based_adaptive_bloating(
|
||||
hotness,
|
||||
num_expert + num_of_redundant_expert,
|
||||
num_rank,
|
||||
stage_weights,
|
||||
recorsive=False,
|
||||
)
|
||||
if np.any(new_deployment < 0):
|
||||
print(f"{new_deployment=}")
|
||||
new_par = self.compute_rank_load(new_deployment, hotness)
|
||||
|
||||
return new_deployment, new_par, current_par
|
||||
|
||||
def register_hotness(self, deployment, rank_load, num_layer, num_expert):
|
||||
for layer in range(num_layer):
|
||||
if layer not in self.hotness_window:
|
||||
self.hotness_window[layer] = deque(
|
||||
maxlen=self.max_stage_window)
|
||||
hotness = self.compute_expert_hotness(num_expert,
|
||||
deployment[layer],
|
||||
rank_load[layer])
|
||||
self.hotness_window[layer].append(hotness)
|
||||
|
||||
def compress_by_avg_pooling_fast_nd(self, arr, m):
|
||||
n, d = arr.shape
|
||||
idx = (np.arange(n) * m // n)
|
||||
result = np.zeros((m, d))
|
||||
counts = np.zeros((m, 1))
|
||||
np.add.at(result, idx, arr)
|
||||
np.add.at(counts, idx, 1)
|
||||
return result / counts
|
||||
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
current_deployment = np.array(current_expert_table)
|
||||
expert_workload = np.array(expert_workload)
|
||||
expert_workload += 1
|
||||
num_layer = expert_workload.shape[0]
|
||||
num_expert = np.unique(current_expert_table[0].reshape(-1)).shape[0]
|
||||
self.register_hotness(current_deployment, expert_workload, num_layer,
|
||||
num_expert)
|
||||
|
||||
new_deployment = current_deployment.copy()
|
||||
|
||||
layers_need_update = np.arange(num_layer)
|
||||
|
||||
new_par = np.zeros(layers_need_update.shape[0])
|
||||
current_par = np.zeros(layers_need_update.shape[0])
|
||||
for i, layer in enumerate(layers_need_update):
|
||||
hotness = np.array(self.hotness_window[layer])
|
||||
if hotness.shape[0] > self.max_stage_window:
|
||||
hotness = self.compress_by_avg_pooling_fast_nd(
|
||||
hotness, self.max_stage_window)
|
||||
|
||||
(
|
||||
new_deployment[layer],
|
||||
new_par[i],
|
||||
current_par[i],
|
||||
) = self.rebalance_layer(current_deployment[layer],
|
||||
hotness,
|
||||
layer_id=layer)
|
||||
|
||||
priority = new_par / current_par
|
||||
priority_idx = np.argsort(priority)
|
||||
priority_idx = priority_idx[priority[priority_idx] <
|
||||
1][:self.buffer_expert_layer_num]
|
||||
|
||||
if np.all(expert_workload == 1):
|
||||
for _, layer in enumerate(layers_need_update):
|
||||
self.hotness_window[layer].pop()
|
||||
return False, np.array([], dtype=int), current_deployment
|
||||
change = len(priority_idx) > 0
|
||||
if change:
|
||||
for idx in priority_idx:
|
||||
self.par_history[layers_need_update[idx]] = new_par[idx]
|
||||
|
||||
layers_need_update = priority_idx
|
||||
deployment = current_deployment
|
||||
for layer in layers_need_update:
|
||||
deployment[layer] = auto_fix_new_placement(
|
||||
current_deployment[layer], new_deployment[layer])
|
||||
|
||||
return change, layers_need_update, deployment
|
||||
|
||||
|
||||
def generate_layered_experts(num_layers=58,
|
||||
layer_shape=(32, 9),
|
||||
expert_min=0,
|
||||
expert_max=255):
|
||||
"""
|
||||
Generate expert deployment matrix meeting the following conditions:
|
||||
- Total of num_layers layers
|
||||
- Each layer has shape layer_shape (32,9)
|
||||
- Each expert from expert_min to expert_max (0 to 255) appears at least once in each layer
|
||||
|
||||
Args:
|
||||
num_layers: Number of layers, default 58
|
||||
layer_shape: Shape of a single layer, default (32,9)
|
||||
expert_min: Minimum expert ID, default 0
|
||||
expert_max: Maximum expert ID, default 255
|
||||
Returns:
|
||||
torch.Tensor: Tensor with shape (num_layers, layer_shape[0], layer_shape[1])
|
||||
"""
|
||||
# 1. Basic parameter calculation
|
||||
expert_num = expert_max - expert_min + 1 # Total number of experts: 256 (0~255)
|
||||
layer_total = layer_shape[0] * layer_shape[
|
||||
1] # Total elements in a single layer: 32*9=288
|
||||
extra_slots = layer_total - expert_num # Number of random positions to fill per layer: 288-256=32
|
||||
|
||||
# 2. Verify feasibility (total elements must be ≥ number of experts to cover all experts)
|
||||
assert layer_total >= expert_num, (
|
||||
f"Number of elements in a single layer {layer_total} < number of experts {expert_num}, "
|
||||
"cannot cover all experts")
|
||||
|
||||
# 3. Generate layers one by one
|
||||
layers = []
|
||||
for _ in range(num_layers):
|
||||
# 3.1 Generate "complete expert sequence" (ensure each expert from 0 to 255 is included)
|
||||
full_experts = torch.arange(expert_min,
|
||||
expert_max + 1,
|
||||
dtype=torch.int64) # shape (256,)
|
||||
|
||||
# 3.2 Generate "supplementary random experts" (fill remaining 32 positions, randomly selected from 0~255)
|
||||
extra_experts = torch.randint(expert_min,
|
||||
expert_max + 1,
|
||||
size=(extra_slots, ),
|
||||
dtype=torch.int64) # shape (32,)
|
||||
|
||||
# 3.3 Concatenate and shuffle (ensure random distribution of experts in each layer)
|
||||
layer_flat = torch.cat([full_experts, extra_experts],
|
||||
dim=0) # shape (288,)
|
||||
# Shuffle order (use randperm to generate random indices to avoid repeated shuffling issues)
|
||||
shuffle_idx = torch.randperm(layer_flat.shape[0])
|
||||
layer_shuffled = layer_flat[shuffle_idx]
|
||||
|
||||
# 3.4 Reshape to layer_shape (32,9)
|
||||
layer = layer_shuffled.reshape(layer_shape)
|
||||
layers.append(layer)
|
||||
|
||||
# 4. Stack all layers to get the final tensor
|
||||
return torch.stack(layers, dim=0) # shape (58,32,9)
|
||||
|
||||
|
||||
def warm_up():
|
||||
exam_config = DynamicConfig()
|
||||
exam_config.ep_worldsize = 32
|
||||
exam_config.num_die_per_host = 16
|
||||
algo = FlashLB(exam_config)
|
||||
# Generate target tensor
|
||||
expert_tensor = generate_layered_experts(num_layers=58,
|
||||
layer_shape=(32, 9))
|
||||
|
||||
algo.rebalance_experts(expert_tensor, torch.randint(1, 1000, (58, 32, 9)))
|
||||
30
vllm_npu/eplb/core/policy/policy_random.py
Normal file
30
vllm_npu/eplb/core/policy/policy_random.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Copyright # Copyright Huawei Technologies Co., Ltd. 2023-2024. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
import copy
|
||||
import random
|
||||
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
|
||||
random.seed(42)
|
||||
|
||||
|
||||
class RandomLoadBalance(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
new_table = copy.deepcopy(current_expert_table)
|
||||
num_layers = len(current_expert_table)
|
||||
|
||||
for i in range(num_layers):
|
||||
# randomly choose two card
|
||||
# indices = random.sample(range(num_card), 2)
|
||||
indices = [3, 1]
|
||||
|
||||
# swap redundant experts
|
||||
expert_id_to_exchange = new_table[i][indices[0]][-1].clone()
|
||||
new_table[i][indices[0]][-1] = new_table[i][indices[1]][-1]
|
||||
new_table[i][indices[1]][-1] = expert_id_to_exchange
|
||||
|
||||
return 1, [-i for i in range(num_layers)], new_table
|
||||
Reference in New Issue
Block a user