This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -0,0 +1,189 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove eplb utils.
import os.path
import random
import sys
import torch
from vllm.logger import logger
def determine_default_expert_map(global_expert_num, world_size, rank_id,
global_redundant_expert_num):
if world_size == 1:
local_ids = torch.arange(global_expert_num, dtype=torch.int32)
return (global_expert_num, local_ids)
local_num_experts = global_expert_num // world_size
expert_map = torch.full((global_expert_num, ), -1, dtype=torch.int32)
if rank_id < world_size - 1:
start = rank_id * local_num_experts
end = (rank_id + 1) * local_num_experts
local_count = local_num_experts
else:
start = rank_id * local_num_experts
end = global_expert_num
local_count = global_expert_num - rank_id * local_num_experts
if isinstance(local_count, int):
local_ids = torch.arange(local_count, dtype=torch.int32)
expert_map[start:end] = local_ids
return (local_count, expert_map)
def generate_log2phy_map(expert_map):
num_local_experts = expert_map.max() + 1
log2phy_map = expert_map.clone()
num_ranks, num_global_expert = log2phy_map.shape
row_indices = torch.arange(num_ranks).view(-1, 1).expand(num_ranks, \
num_global_expert) * num_local_experts
log2phy_map[log2phy_map != -1] += row_indices[log2phy_map != -1]
for idx in range(num_global_expert):
positive_rank_idx = torch.where(log2phy_map[:, idx] != -1)[0]
negative_rank_idx = torch.where(log2phy_map[:, idx] == -1)[0]
num_rank_holding_expert = positive_rank_idx.size(0)
if num_rank_holding_expert == 0:
log2phy_map[:, idx] = torch.full((num_ranks, ),
0,
dtype=log2phy_map.dtype)
if num_rank_holding_expert == 1:
log2phy_map[negative_rank_idx, idx] = torch.full(
(num_ranks - 1, ),
log2phy_map[positive_rank_idx, idx].item(),
dtype=log2phy_map.dtype)
else:
try:
random_list = [
random.choice(log2phy_map[positive_rank_idx, idx])
for _ in range(num_ranks - num_rank_holding_expert)
]
log2phy_map[negative_rank_idx,
idx] = torch.tensor(random_list,
dtype=log2phy_map.dtype)
except Exception as e:
logger.error(f"Fail to get log2phy_map: {str(e)}")
return log2phy_map
def determine_default_log2phy_map(global_expert_num, world_size, rank_id):
if world_size == 1:
local_ids = torch.arange(global_expert_num, dtype=torch.int32)
expert_map_all = local_ids.unsqueeze(0).expand(world_size, -1)
log2phy_map_all = generate_log2phy_map(expert_map_all)
return log2phy_map_all[rank_id]
local_num_experts = global_expert_num // world_size
expert_map_all = torch.full((world_size, global_expert_num),
-1,
dtype=torch.int32)
for r in range(world_size):
if r < world_size - 1:
start = r * local_num_experts
end = (r + 1) * local_num_experts
local_count = local_num_experts
else:
start = r * local_num_experts
end = global_expert_num
local_count = global_expert_num - r * local_num_experts
if isinstance(local_count, int):
local_ids = torch.arange(local_count, dtype=torch.int32)
expert_map_all[r, start:end] = local_ids
log2phy_map_all = generate_log2phy_map(expert_map_all)
return log2phy_map_all[rank_id]
class EPLBParamUtils:
@staticmethod
def check_iterations(iterations):
if not isinstance(iterations, int):
raise TypeError(f"The {iterations} is not int.")
if iterations <= 0:
raise ValueError(
f"The {iterations} can not less than or equal to 0.")
if iterations > sys.maxsize:
raise ValueError(
f"The {iterations} can not large than {sys.maxsize}")
@staticmethod
def check_dynamic_eplb(dynamic_eplb):
if dynamic_eplb is None:
return
if not isinstance(dynamic_eplb, bool):
raise TypeError("The dynamic_eplb is not bool.")
if dynamic_eplb and os.getenv("DYNAMIC_EPLB", "false") != "true":
raise ValueError(
'Can not enable dynamic_eplb when not export DYNAMIC_EPLB="true".'
)
@staticmethod
def check_expert_map_path(expert_map):
if expert_map is None:
return
if not isinstance(expert_map, str):
raise TypeError("The expert_map is not str.")
if not expert_map.strip():
raise ValueError("The expert_map is not empty.")
_, ext = os.path.splitext(expert_map)
if ext.lower() != ".json":
raise TypeError("The expert_map is not json.")
if not os.path.exists(expert_map):
raise ValueError("The expert_map is not exist.")
try:
with open(expert_map, "w", encoding='utf-8') as f:
f.read()
except Exception as e:
raise IOError(
f"Fail read expert info from {expert_map}, please check the reading permission of {expert_map} : {e}"
)
@staticmethod
def check_expert_map_record_path(expert_map_record_path):
if expert_map_record_path is None:
return
if not isinstance(expert_map_record_path, str):
raise TypeError("The expert_map_record_path is not str.")
if not expert_map_record_path.strip():
raise ValueError("The expert_map_record_path is empty.")
_, ext = os.path.splitext(expert_map_record_path)
if ext.lower() != ".json":
raise TypeError("The expert_map_record_path is not json.")
if os.getenv("EXPERT_MAP_RECORD", "false") != "true":
raise ValueError(
'Can not enable expert_map_record_path when not export EXPERT_MAP_RECORD="true".'
)
try:
with open(expert_map_record_path, "w", encoding='utf-8') as f:
f.write("")
except Exception as e:
raise IOError(
f"Fail write expert info to {expert_map_record_path}, please check the writing permission of {expert_map_record_path} : {e}"
)