mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
165
vllm_npu/distributed/device_communicators/pyhccl.py
Normal file
165
vllm_npu/distributed/device_communicators/pyhccl.py
Normal file
@@ -0,0 +1,165 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup, ReduceOp
|
||||
from vllm.distributed.utils import StatelessProcessGroup
|
||||
from vllm.logger import logger
|
||||
|
||||
from vllm_npu.distributed.device_communicators.pyhccl_wrapper import (
|
||||
HCCLLibrary, aclrtStream_t, buffer_type, hcclComm_t, hcclDataTypeEnum,
|
||||
hcclRedOpTypeEnum, hcclUniqueId)
|
||||
from vllm_npu.utils import current_stream
|
||||
|
||||
|
||||
class PyHcclCommunicator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
group: Union[ProcessGroup, StatelessProcessGroup],
|
||||
device: Union[int, str, torch.device],
|
||||
library_path: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
group: the process group to work on. If None, it will use the
|
||||
default process group.
|
||||
device: the device to bind the PyHcclCommunicator to. If None,
|
||||
it will be bind to f"npu:{local_rank}".
|
||||
library_path: the path to the HCCL library. If None, it will
|
||||
use the default library path.
|
||||
It is the caller's responsibility to make sure each communicator
|
||||
is bind to a unique device.
|
||||
"""
|
||||
|
||||
if not isinstance(group, StatelessProcessGroup):
|
||||
assert dist.is_initialized()
|
||||
assert dist.get_backend(group) != dist.Backend.HCCL, (
|
||||
"PyHcclCommunicator should be attached to a non-HCCL group.")
|
||||
# note: this rank is the rank in the group
|
||||
self.rank = dist.get_rank(group)
|
||||
self.world_size = dist.get_world_size(group)
|
||||
else:
|
||||
self.rank = group.rank
|
||||
self.world_size = group.world_size
|
||||
|
||||
self.group = group
|
||||
|
||||
# if world_size == 1, no need to create communicator
|
||||
if self.world_size == 1:
|
||||
self.available = False
|
||||
self.disabled = True
|
||||
return
|
||||
|
||||
try:
|
||||
self.hccl = HCCLLibrary(library_path)
|
||||
except Exception:
|
||||
# disable because of missing HCCL library
|
||||
# e.g. in a non-NPU environment
|
||||
self.available = False
|
||||
self.disabled = True
|
||||
return
|
||||
|
||||
self.available = True
|
||||
self.disabled = False
|
||||
|
||||
logger.info("vLLM is using pyhccl")
|
||||
|
||||
if isinstance(device, int):
|
||||
device = torch.device(f"npu:{device}")
|
||||
elif isinstance(device, str):
|
||||
device = torch.device(device)
|
||||
# now `device` is a `torch.device` object
|
||||
assert isinstance(device, torch.device)
|
||||
self.device = device
|
||||
|
||||
if self.rank == 0:
|
||||
# get the unique id from HCCL
|
||||
with torch.npu.device(device):
|
||||
self.unique_id = self.hccl.hcclGetUniqueId()
|
||||
else:
|
||||
# construct an empty unique id
|
||||
self.unique_id = hcclUniqueId()
|
||||
|
||||
if not isinstance(group, StatelessProcessGroup):
|
||||
tensor = torch.ByteTensor(list(self.unique_id.internal))
|
||||
ranks = dist.get_process_group_ranks(group)
|
||||
# arg `src` in `broadcast` is the global rank
|
||||
dist.broadcast(tensor, src=ranks[0], group=group)
|
||||
byte_list = tensor.tolist()
|
||||
for i, byte in enumerate(byte_list):
|
||||
self.unique_id.internal[i] = byte
|
||||
else:
|
||||
self.unique_id = group.broadcast_obj(self.unique_id, src=0)
|
||||
|
||||
# hccl communicator and stream will use this device
|
||||
# `torch.npu.device` is a context manager that changes the
|
||||
# current npu device to the specified one
|
||||
with torch.npu.device(device):
|
||||
self.comm: hcclComm_t = self.hccl.hcclCommInitRank(
|
||||
self.world_size, self.unique_id, self.rank)
|
||||
|
||||
stream = current_stream()
|
||||
# A small all_reduce for warmup.
|
||||
data = torch.zeros(1, device=device)
|
||||
self.all_reduce(data)
|
||||
stream.synchronize()
|
||||
del data
|
||||
|
||||
def all_reduce(self,
|
||||
in_tensor: torch.Tensor,
|
||||
op: ReduceOp = ReduceOp.SUM,
|
||||
stream=None) -> torch.Tensor:
|
||||
if self.disabled:
|
||||
return None
|
||||
# hccl communicator created on a specific device
|
||||
# will only work on tensors on the same device
|
||||
# otherwise it will cause "illegal memory access"
|
||||
assert in_tensor.device == self.device, (
|
||||
f"this hccl communicator is created to work on {self.device}, "
|
||||
f"but the input tensor is on {in_tensor.device}")
|
||||
|
||||
out_tensor = torch.empty_like(in_tensor)
|
||||
|
||||
if stream is None:
|
||||
stream = current_stream()
|
||||
self.hccl.hcclAllReduce(buffer_type(in_tensor.data_ptr()),
|
||||
buffer_type(out_tensor.data_ptr()),
|
||||
in_tensor.numel(),
|
||||
hcclDataTypeEnum.from_torch(in_tensor.dtype),
|
||||
hcclRedOpTypeEnum.from_torch(op), self.comm,
|
||||
aclrtStream_t(stream.npu_stream))
|
||||
return out_tensor
|
||||
|
||||
def broadcast(self, tensor: torch.Tensor, src: int, stream=None):
|
||||
if self.disabled:
|
||||
return
|
||||
assert tensor.device == self.device, (
|
||||
f"this hccl communicator is created to work on {self.device}, "
|
||||
f"but the input tensor is on {tensor.device}")
|
||||
if stream is None:
|
||||
stream = current_stream()
|
||||
if src == self.rank:
|
||||
buffer = buffer_type(tensor.data_ptr())
|
||||
else:
|
||||
buffer = buffer_type(tensor.data_ptr())
|
||||
self.hccl.hcclBroadcast(buffer, tensor.numel(),
|
||||
hcclDataTypeEnum.from_torch(tensor.dtype), src,
|
||||
self.comm, aclrtStream_t(stream.npu_stream))
|
||||
Reference in New Issue
Block a user