mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
0
vllm_npu/compilation/__init__.py
Normal file
0
vllm_npu/compilation/__init__.py
Normal file
398
vllm_npu/compilation/acl_graph.py
Normal file
398
vllm_npu/compilation/acl_graph.py
Normal file
@@ -0,0 +1,398 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import dataclasses
|
||||
from contextlib import ExitStack
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, Optional
|
||||
from unittest.mock import patch
|
||||
|
||||
import torch
|
||||
import torch_npu
|
||||
import vllm.envs as envs
|
||||
from vllm.compilation.counter import compilation_counter
|
||||
from vllm.compilation.cuda_graph import CUDAGraphOptions
|
||||
from vllm.compilation.monitor import validate_cudagraph_capturing_enabled
|
||||
from vllm.config import CUDAGraphMode, VllmConfig
|
||||
from vllm.forward_context import BatchDescriptor, get_forward_context
|
||||
from vllm.logger import logger
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from ..utils import weak_ref_tensors
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ACLGraphEntry:
|
||||
batch_descriptor: BatchDescriptor
|
||||
aclgraph: Optional[torch.npu.NPUGraph] = None
|
||||
output: Optional[Any] = None
|
||||
|
||||
# for aclgraph debugging, track the input addresses
|
||||
# during capture, and check if they are the same during replay
|
||||
input_addresses: Optional[list[int]] = None
|
||||
|
||||
|
||||
class ACLGraphWrapper:
|
||||
"""Wraps a runnable to add acl graph capturing and replaying ability. And
|
||||
provide attribute access to the underlying `runnable` via `__getattr__`.
|
||||
|
||||
The workflow of this wrapper in the aclgraph dispatching is as follows:
|
||||
1. At initialization, a runtime mode is assigned to the wrapper (FULL or
|
||||
PIECEWISE).
|
||||
2. At runtime, the wrapper receives a runtime_mode and a
|
||||
batch_descriptor(key) from the forward context and blindly trust them
|
||||
for aclgraph dispatching.
|
||||
3. If runtime_mode is NONE or runtime_mode does not match the mode of the
|
||||
wrapper, just call the runnable directly.
|
||||
4. Otherwise, i.e., the runtime_mode matches the mode of the wrapper,
|
||||
the wrapper will perform aclgraph capture(if key does not exist, create
|
||||
a new entry and cache it) or replay (if key exists in the cache).
|
||||
|
||||
Note: ACLGraphWrapper does not store persistent buffers or copy any
|
||||
runtime inputs into that buffers for replay. We assume implementing them
|
||||
is done outside of the wrapper. That is because we do not make any
|
||||
assumption on the dynamic shape (batch size) of the runtime inputs, as a
|
||||
trade-off for staying orthogonal to compilation logic. Nevertheless,
|
||||
tracing and checking the input addresses to be consistent during replay is
|
||||
guaranteed when VLLM_LOGGING_LEVEL == "DEBUG".
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
runnable: Callable,
|
||||
vllm_config: VllmConfig,
|
||||
runtime_mode: CUDAGraphMode,
|
||||
graph_pool: Any = None,
|
||||
cudagraph_options: Optional[CUDAGraphOptions] = None):
|
||||
self.runnable = runnable
|
||||
self.vllm_config = vllm_config
|
||||
self.graph_pool = graph_pool
|
||||
self.runtime_mode = runtime_mode
|
||||
self.compilation_config = vllm_config.compilation_config
|
||||
|
||||
self.first_run_finished = False
|
||||
self.is_debugging_mode = envs.VLLM_LOGGING_LEVEL == "DEBUG"
|
||||
|
||||
# assert runtime_mode is not NONE(no aclgraph), otherwise, we don't
|
||||
# need to initialize a ACLGraphWrapper.
|
||||
assert self.runtime_mode != CUDAGraphMode.NONE
|
||||
if self.graph_pool is None:
|
||||
self.graph_pool = current_platform.get_global_graph_pool()
|
||||
|
||||
if cudagraph_options is None:
|
||||
cudagraph_options = CUDAGraphOptions()
|
||||
self.aclgraph_options = cudagraph_options
|
||||
# the entries for different batch descriptors that we need to capture
|
||||
# aclgraphs for.
|
||||
self.concrete_aclgraph_entries: dict[BatchDescriptor, ACLGraphEntry]\
|
||||
= {}
|
||||
|
||||
def __getattr__(self, key: str):
|
||||
# allow accessing the attributes of the runnable.
|
||||
if hasattr(self.runnable, key):
|
||||
return getattr(self.runnable, key)
|
||||
raise AttributeError(f"Attribute {key} not exists in the runnable of "
|
||||
f"aclgraph wrapper: {self.runnable}")
|
||||
|
||||
def unwrap(self) -> Callable:
|
||||
# in case we need to access the original runnable.
|
||||
return self.runnable
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
forward_context = get_forward_context()
|
||||
batch_descriptor = forward_context.batch_descriptor
|
||||
aclgraph_runtime_mode = forward_context.cudagraph_runtime_mode
|
||||
|
||||
if aclgraph_runtime_mode == CUDAGraphMode.NONE or \
|
||||
aclgraph_runtime_mode != self.runtime_mode:
|
||||
# CUDAGraphMode.NONE could mean the profile run, a warmup run, or
|
||||
# running without aclgraphs.
|
||||
# We do not trigger capture/replay if the runtime mode is not
|
||||
# matches. This enables properly dispatching to the correct
|
||||
# CUDAGraphWrapper when nesting multiple instances with different
|
||||
# runtime modes.
|
||||
return self.runnable(*args, **kwargs)
|
||||
|
||||
if batch_descriptor not in self.concrete_aclgraph_entries:
|
||||
# create a new entry for this batch descriptor
|
||||
self.concrete_aclgraph_entries[batch_descriptor] = \
|
||||
ACLGraphEntry(batch_descriptor=batch_descriptor)
|
||||
|
||||
entry = self.concrete_aclgraph_entries[batch_descriptor]
|
||||
|
||||
if entry.aclgraph is None:
|
||||
if self.aclgraph_options.debug_log_enable:
|
||||
# Since we capture aclgraph for many different shapes and
|
||||
# capturing is fast, we don't need to log it for every
|
||||
# shape. E.g. we only log it for the first subgraph in
|
||||
# piecewise mode.
|
||||
logger.debug("Capturing a aclgraph on (%s,%s)",
|
||||
self.runtime_mode.name, entry.batch_descriptor)
|
||||
# validate that aclgraph capturing is legal at this point.
|
||||
validate_cudagraph_capturing_enabled()
|
||||
|
||||
input_addresses = [
|
||||
x.data_ptr() for x in args if isinstance(x, torch.Tensor)
|
||||
]
|
||||
entry.input_addresses = input_addresses
|
||||
aclgraph = torch.npu.NPUGraph()
|
||||
|
||||
with ExitStack() as stack:
|
||||
if self.aclgraph_options.gc_disable:
|
||||
# during every model forward for piecewise aclgraph
|
||||
# mode, we will capture many pieces of aclgraphs
|
||||
# (roughly one per layer). running gc again and again
|
||||
# across layers will make the aclgraph capture very slow.
|
||||
# therefore, we only run gc for the first graph,
|
||||
# and disable gc for the rest of the graphs.
|
||||
stack.enter_context(patch("gc.collect", lambda: None))
|
||||
stack.enter_context(
|
||||
patch("torch.npu.empty_cache", lambda: None))
|
||||
|
||||
# mind-exploding: carefully manage the reference and memory.
|
||||
forward_context.capturing = True
|
||||
with torch.npu.graph(aclgraph, pool=self.graph_pool):
|
||||
# `output` is managed by pytorch's aclgraph pool
|
||||
output = self.runnable(*args, **kwargs)
|
||||
if self.aclgraph_options.weak_ref_output:
|
||||
# by converting it to weak ref,
|
||||
# the original `output` will immediately be released
|
||||
# to save memory. It is only safe to do this for
|
||||
# the last graph in piecewise aclgraph mode, because
|
||||
# the output of the last graph will not be used by
|
||||
# any other acl graph.
|
||||
output = weak_ref_tensors(output)
|
||||
|
||||
# here we always use weak ref for the output
|
||||
# to save memory
|
||||
entry.output = weak_ref_tensors(output)
|
||||
entry.aclgraph = aclgraph
|
||||
|
||||
compilation_counter.num_cudagraph_captured += 1
|
||||
|
||||
# important: we need to return the output, rather than
|
||||
# the weak ref of the output, so that pytorch can correctly
|
||||
# manage the memory during acl graph capture
|
||||
return output
|
||||
|
||||
if self.is_debugging_mode:
|
||||
# check if the input addresses are the same
|
||||
new_input_addresses = [
|
||||
x.data_ptr() for x in args if isinstance(x, torch.Tensor)
|
||||
]
|
||||
assert new_input_addresses == entry.input_addresses, (
|
||||
f"Input addresses for aclgraphs are different "
|
||||
f"during replay. Expected {entry.input_addresses}, "
|
||||
f"got {new_input_addresses}")
|
||||
|
||||
logger.info_once("Replaying aclgraph")
|
||||
entry.aclgraph.replay()
|
||||
return entry.output
|
||||
|
||||
|
||||
def update_attn_params(update_stream,
|
||||
forward_context,
|
||||
runtime_shape,
|
||||
kv_transfer_config=None):
|
||||
graph_params = get_graph_params()
|
||||
|
||||
# NOTE(Angazenn): By moving the npu-stream context ahead,
|
||||
# (see https://github.com/vllm-project/vllm-ascend/pull/3985)
|
||||
# we can reduce host overhead introduced by stream initialization.
|
||||
# However, we find that this might cause potential accuracy problems
|
||||
# with pd-disaggreagation. Therefore, this optimization is only enabled
|
||||
# without pd-disaggreagation. We are working on to solve this problem
|
||||
# directly int the future.
|
||||
if kv_transfer_config is not None:
|
||||
for key, param, handle, event in zip(
|
||||
forward_context.attn_metadata,
|
||||
graph_params.attn_params[runtime_shape],
|
||||
graph_params.handles[runtime_shape],
|
||||
graph_params.events[runtime_shape],
|
||||
):
|
||||
(
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
num_kv_heads,
|
||||
num_heads,
|
||||
scale,
|
||||
block_table,
|
||||
seq_lens,
|
||||
output,
|
||||
) = param
|
||||
seq_lens = forward_context.attn_metadata[key].seq_lens
|
||||
|
||||
# When using FULL_DECODE_ONLY, there are some rare bugs for FULL_DECODE_ONLY
|
||||
# mode with GQA. This is triggered by getting workspace for _npu_paged_attention
|
||||
# in torch_npu. On some cases, _npu_paged_attention requires different workspace
|
||||
# among various seq_lens. So additional get_workspace is added here
|
||||
# to avoid such bugs.
|
||||
# TODO(Angazenn): we will remove this once _npu_paged_attention is fully
|
||||
# replaced by npu_fused_infer_attention_score which does not contain such bugs.
|
||||
workspace = torch_npu._npu_paged_attention_get_workspace(
|
||||
query=query,
|
||||
key_cache=key_cache,
|
||||
value_cache=value_cache,
|
||||
num_kv_heads=num_kv_heads,
|
||||
num_heads=num_heads,
|
||||
scale_value=scale,
|
||||
block_table=block_table,
|
||||
context_lens=seq_lens,
|
||||
out=output)
|
||||
|
||||
with torch.npu.stream(update_stream):
|
||||
torch.npu.graph_task_update_begin(update_stream, handle)
|
||||
torch_npu._npu_paged_attention(query=query,
|
||||
key_cache=key_cache,
|
||||
value_cache=value_cache,
|
||||
num_kv_heads=num_kv_heads,
|
||||
num_heads=num_heads,
|
||||
scale_value=scale,
|
||||
block_table=block_table,
|
||||
context_lens=seq_lens,
|
||||
out=output,
|
||||
workspace=workspace)
|
||||
torch.npu.graph_task_update_end(update_stream)
|
||||
|
||||
event.record(update_stream)
|
||||
else:
|
||||
with torch.npu.stream(update_stream):
|
||||
for key, param, handle, event in zip(
|
||||
forward_context.attn_metadata,
|
||||
graph_params.attn_params[runtime_shape],
|
||||
graph_params.handles[runtime_shape],
|
||||
graph_params.events[runtime_shape],
|
||||
):
|
||||
(
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
num_kv_heads,
|
||||
num_heads,
|
||||
scale,
|
||||
block_table,
|
||||
seq_lens,
|
||||
output,
|
||||
) = param
|
||||
seq_lens = forward_context.attn_metadata[key].seq_lens
|
||||
|
||||
workspace = torch_npu._npu_paged_attention_get_workspace(
|
||||
query=query,
|
||||
key_cache=key_cache,
|
||||
value_cache=value_cache,
|
||||
num_kv_heads=num_kv_heads,
|
||||
num_heads=num_heads,
|
||||
scale_value=scale,
|
||||
block_table=block_table,
|
||||
context_lens=seq_lens,
|
||||
out=output)
|
||||
torch.npu.graph_task_update_begin(update_stream, handle)
|
||||
torch_npu._npu_paged_attention(query=query,
|
||||
key_cache=key_cache,
|
||||
value_cache=value_cache,
|
||||
num_kv_heads=num_kv_heads,
|
||||
num_heads=num_heads,
|
||||
scale_value=scale,
|
||||
block_table=block_table,
|
||||
context_lens=seq_lens,
|
||||
out=output,
|
||||
workspace=workspace)
|
||||
torch.npu.graph_task_update_end(update_stream)
|
||||
|
||||
event.record(update_stream)
|
||||
|
||||
|
||||
def update_mla_attn_params(update_stream, forward_context, runtime_shape,
|
||||
speculative_config):
|
||||
graph_params = get_graph_params()
|
||||
# FIXME: Behold! We are using a temporary hack here to update the args
|
||||
# for each layer's attention op in the graph.
|
||||
with torch.npu.stream(update_stream):
|
||||
for key, param, handle, event in zip(
|
||||
forward_context.attn_metadata,
|
||||
graph_params.attn_params[runtime_shape],
|
||||
graph_params.handles[runtime_shape],
|
||||
graph_params.events[runtime_shape],
|
||||
):
|
||||
(q_nope, k_nope, q_pe, k_pe, num_heads, num_kv_heads, input_layout,
|
||||
spec_attn_mask, sparse_mode, scale, block_table, block_size,
|
||||
seq_lens_list, actual_seq_lengths, attn_output,
|
||||
softmax_lse) = param
|
||||
seq_lens_list = forward_context.attn_metadata[
|
||||
key].decode.seq_lens_list
|
||||
if speculative_config and speculative_config.method == "deepseek_mtp":
|
||||
actual_seq_lengths = forward_context.attn_metadata[
|
||||
key].decode.actual_seq_lengths_q
|
||||
spec_multiple = speculative_config.num_speculative_tokens + 1
|
||||
seq_lens_list = seq_lens_list + [0] * (
|
||||
runtime_shape // spec_multiple - len(seq_lens_list))
|
||||
actual_seq_lengths = [
|
||||
spec_multiple * (i + 1)
|
||||
for i in range(runtime_shape // spec_multiple)
|
||||
]
|
||||
else:
|
||||
seq_lens_list = seq_lens_list + [0] * (runtime_shape -
|
||||
len(seq_lens_list))
|
||||
|
||||
torch.npu.graph_task_update_begin(update_stream, handle)
|
||||
|
||||
torch_npu.npu_fused_infer_attention_score.out(
|
||||
q_nope,
|
||||
k_nope,
|
||||
k_nope,
|
||||
query_rope=q_pe,
|
||||
key_rope=k_pe,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_kv_heads,
|
||||
input_layout=input_layout,
|
||||
atten_mask=spec_attn_mask,
|
||||
sparse_mode=sparse_mode,
|
||||
scale=scale,
|
||||
antiquant_mode=0,
|
||||
antiquant_scale=None,
|
||||
block_table=block_table,
|
||||
block_size=block_size,
|
||||
actual_seq_lengths_kv=seq_lens_list,
|
||||
actual_seq_lengths=actual_seq_lengths,
|
||||
workspace=graph_params.workspaces.get(runtime_shape),
|
||||
out=[attn_output, softmax_lse])
|
||||
torch.npu.graph_task_update_end(update_stream)
|
||||
|
||||
event.record(update_stream)
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphParams:
|
||||
events: dict[int, list[torch.npu.ExternalEvent]]
|
||||
workspaces: dict[int, torch.Tensor]
|
||||
handles: dict[int, list[torch_npu._C._NPUTaskGroupHandle]]
|
||||
attn_params: dict[int, list[tuple]]
|
||||
|
||||
|
||||
_graph_params: Optional[GraphParams] = None
|
||||
|
||||
|
||||
def set_graph_params(aclgraph_capture_sizes: set[int]):
|
||||
global _graph_params
|
||||
if _graph_params is not None:
|
||||
raise ValueError("Graph parameters have already been set!")
|
||||
_graph_params = GraphParams(
|
||||
{size: []
|
||||
for size in aclgraph_capture_sizes},
|
||||
{size: None
|
||||
for size in aclgraph_capture_sizes},
|
||||
{size: []
|
||||
for size in aclgraph_capture_sizes},
|
||||
{size: []
|
||||
for size in aclgraph_capture_sizes},
|
||||
)
|
||||
|
||||
|
||||
def update_graph_params_workspaces(num_tokens: int, workspace: Any):
|
||||
global _graph_params
|
||||
if _graph_params is not None:
|
||||
_graph_params.workspaces[num_tokens] = workspace
|
||||
|
||||
|
||||
def get_graph_params():
|
||||
return _graph_params
|
||||
Reference in New Issue
Block a user