This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -0,0 +1,96 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def _generate_attn_mask(max_seq_len, dtype):
# Construct lower triangle matrix.
mask_flag = torch.ones((max_seq_len, max_seq_len),
dtype=torch.bool).tril_()
# Create upper triangle matrix used to mark mask positions.
mask_flag = ~mask_flag
# Currently for fp16 dtype, the mask value should be set to -inf.
# TODO: Eliminate this part in the future.
mask_value = float('-inf') if dtype == torch.float16 else 1
attn_mask = torch.zeros(size=(max_seq_len, max_seq_len), dtype=dtype) \
.masked_fill_(mask_flag, mask_value)
return attn_mask
class AttentionMaskBuilder:
def __init__(
self,
max_seq_len: int,
dtype: torch.dtype,
device: torch.device = None,
):
# NOTE: The device argument specifies the target NPU
# to be used for the newly added FIA operator.
# Only pass this parameter when using the new FIA operator.
attn_mask = _generate_attn_mask(max_seq_len, dtype)
self._seq_len_cached = attn_mask.shape[0]
self.attn_mask_cache = attn_mask
self.device = device
self.pooling_mask = None
assigned_mask_dim = 2048
self.chunked_prefill_attn_mask = torch.triu(
torch.ones(assigned_mask_dim, assigned_mask_dim),
diagonal=1).to(torch.int8).to(device)
@staticmethod
def get_mask_scale_factor(dtype: torch.dtype = torch.float16):
if dtype == torch.float16:
mask_scale_factor = 1
elif dtype == torch.bfloat16:
mask_scale_factor = -10000
else:
raise ValueError(
"The current operation now only supports data types: torch.float16 and "
"torch.bfloat16. Please ensure the input is of one of these types."
)
return mask_scale_factor
def get_attn_mask(self, max_seq_len: int, dtype: torch.dtype,
device: torch.device):
self._update_attn_cache(max_seq_len, dtype)
return self.attn_mask_cache[:max_seq_len, :max_seq_len].contiguous(
).to(device, non_blocking=True)
def get_pooling_mask(self, device):
if self.pooling_mask is None:
# the compressed attention mask for npu_fusion_attention sparse mode 4
self.pooling_mask = torch.triu(torch.ones(
2048, 2048), diagonal=1).to(torch.bool).to(device,
non_blocking=True)
return self.pooling_mask
def get_splitfuse_attn_mask(
self,
seq_lens: torch.Tensor = None,
position: torch.Tensor = None,
dtype: torch.dtype = None,
device: torch.device = None,
) -> torch.Tensor:
return self.chunked_prefill_attn_mask
def _update_attn_cache(self, seqlen: int, dtype: torch.dtype):
if seqlen > self._seq_len_cached:
self._seq_len_cached = seqlen
self.attn_mask_cache = _generate_attn_mask(seqlen, dtype)
if self.attn_mask_cache.dtype != dtype:
self.attn_mask_cache = self.attn_mask_cache.to(dtype)