mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
@@ -1 +0,0 @@
|
||||
"""Ascend NPU attention backends."""
|
||||
|
||||
96
vllm_npu/attention/attention_mask.py
Normal file
96
vllm_npu/attention/attention_mask.py
Normal file
@@ -0,0 +1,96 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
|
||||
def _generate_attn_mask(max_seq_len, dtype):
|
||||
# Construct lower triangle matrix.
|
||||
mask_flag = torch.ones((max_seq_len, max_seq_len),
|
||||
dtype=torch.bool).tril_()
|
||||
# Create upper triangle matrix used to mark mask positions.
|
||||
mask_flag = ~mask_flag
|
||||
# Currently for fp16 dtype, the mask value should be set to -inf.
|
||||
# TODO: Eliminate this part in the future.
|
||||
mask_value = float('-inf') if dtype == torch.float16 else 1
|
||||
attn_mask = torch.zeros(size=(max_seq_len, max_seq_len), dtype=dtype) \
|
||||
.masked_fill_(mask_flag, mask_value)
|
||||
return attn_mask
|
||||
|
||||
|
||||
class AttentionMaskBuilder:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_seq_len: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device = None,
|
||||
):
|
||||
# NOTE: The device argument specifies the target NPU
|
||||
# to be used for the newly added FIA operator.
|
||||
# Only pass this parameter when using the new FIA operator.
|
||||
|
||||
attn_mask = _generate_attn_mask(max_seq_len, dtype)
|
||||
|
||||
self._seq_len_cached = attn_mask.shape[0]
|
||||
self.attn_mask_cache = attn_mask
|
||||
self.device = device
|
||||
self.pooling_mask = None
|
||||
assigned_mask_dim = 2048
|
||||
self.chunked_prefill_attn_mask = torch.triu(
|
||||
torch.ones(assigned_mask_dim, assigned_mask_dim),
|
||||
diagonal=1).to(torch.int8).to(device)
|
||||
|
||||
@staticmethod
|
||||
def get_mask_scale_factor(dtype: torch.dtype = torch.float16):
|
||||
if dtype == torch.float16:
|
||||
mask_scale_factor = 1
|
||||
elif dtype == torch.bfloat16:
|
||||
mask_scale_factor = -10000
|
||||
else:
|
||||
raise ValueError(
|
||||
"The current operation now only supports data types: torch.float16 and "
|
||||
"torch.bfloat16. Please ensure the input is of one of these types."
|
||||
)
|
||||
return mask_scale_factor
|
||||
|
||||
def get_attn_mask(self, max_seq_len: int, dtype: torch.dtype,
|
||||
device: torch.device):
|
||||
self._update_attn_cache(max_seq_len, dtype)
|
||||
return self.attn_mask_cache[:max_seq_len, :max_seq_len].contiguous(
|
||||
).to(device, non_blocking=True)
|
||||
|
||||
def get_pooling_mask(self, device):
|
||||
if self.pooling_mask is None:
|
||||
# the compressed attention mask for npu_fusion_attention sparse mode 4
|
||||
self.pooling_mask = torch.triu(torch.ones(
|
||||
2048, 2048), diagonal=1).to(torch.bool).to(device,
|
||||
non_blocking=True)
|
||||
return self.pooling_mask
|
||||
|
||||
def get_splitfuse_attn_mask(
|
||||
self,
|
||||
seq_lens: torch.Tensor = None,
|
||||
position: torch.Tensor = None,
|
||||
dtype: torch.dtype = None,
|
||||
device: torch.device = None,
|
||||
) -> torch.Tensor:
|
||||
return self.chunked_prefill_attn_mask
|
||||
|
||||
def _update_attn_cache(self, seqlen: int, dtype: torch.dtype):
|
||||
if seqlen > self._seq_len_cached:
|
||||
self._seq_len_cached = seqlen
|
||||
self.attn_mask_cache = _generate_attn_mask(seqlen, dtype)
|
||||
if self.attn_mask_cache.dtype != dtype:
|
||||
self.attn_mask_cache = self.attn_mask_cache.to(dtype)
|
||||
File diff suppressed because it is too large
Load Diff
1326
vllm_npu/attention/mla_v1.py
Normal file
1326
vllm_npu/attention/mla_v1.py
Normal file
File diff suppressed because it is too large
Load Diff
988
vllm_npu/attention/sfa_v1.py
Normal file
988
vllm_npu/attention/sfa_v1.py
Normal file
@@ -0,0 +1,988 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import (TYPE_CHECKING, ClassVar, NamedTuple, Optional, Tuple, Type,
|
||||
TypeVar)
|
||||
|
||||
import torch
|
||||
import torch_npu
|
||||
from torch import nn
|
||||
from vllm.attention.backends.abstract import (AttentionBackend,
|
||||
AttentionMetadata,
|
||||
MLAAttentionImpl)
|
||||
from vllm.config import VllmConfig, get_current_vllm_config
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size, get_tp_group
|
||||
from vllm.model_executor.layers.linear import (LinearBase,
|
||||
UnquantizedLinearMethod)
|
||||
from vllm.utils import cdiv, round_down
|
||||
from vllm.v1.attention.backends.utils import AttentionCGSupport
|
||||
|
||||
from vllm_npu.ascend_config import get_ascend_config
|
||||
from vllm_npu.attention.attention_v1 import AscendAttentionState
|
||||
from vllm_npu.attention.mla_v1 import AscendMLAMetadata
|
||||
from vllm_npu.attention.utils import (AscendCommonAttentionMetadata,
|
||||
split_decodes_and_prefills)
|
||||
from vllm_npu.multistream.base import MSAttentionMetadataSplitConfig
|
||||
from vllm_npu.multistream.ms_split import model_input_split_v1_mla_attn
|
||||
from vllm_npu.worker.npu_input_batch import InputBatch
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.v1.core.sched.output import SchedulerOutput
|
||||
|
||||
|
||||
class AscendSFABackend(AttentionBackend):
|
||||
|
||||
accept_output_buffer: bool = True
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
return "ASCEND_SFA"
|
||||
|
||||
@staticmethod
|
||||
def get_metadata_cls() -> type["AttentionMetadata"]:
|
||||
return AscendSFAMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls():
|
||||
return AscendSFAMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(num_blocks: int, block_size: int, num_kv_heads: int,
|
||||
head_size: int) -> tuple[int, ...]:
|
||||
return (num_blocks, block_size, num_kv_heads, head_size)
|
||||
|
||||
@staticmethod
|
||||
def get_impl_cls() -> Type["AscendSFAImpl"]:
|
||||
return AscendSFAImpl
|
||||
|
||||
|
||||
@dataclass
|
||||
class AscendSFAPrefillMetadata:
|
||||
""" Prefill Specific Metadata for Ascend"""
|
||||
|
||||
@dataclass
|
||||
class ChunkedContextMetadata:
|
||||
# New for MLA (compared to FlashAttention)
|
||||
# For handling chunked prefill
|
||||
cu_seq_lens: torch.Tensor
|
||||
starts: torch.Tensor
|
||||
seq_tot: list[int]
|
||||
max_seq_lens: list[int]
|
||||
workspace: torch.Tensor
|
||||
chunk_seq_lens: torch.Tensor
|
||||
|
||||
attn_mask: torch.Tensor
|
||||
query_lens: list[int]
|
||||
seq_lens: list[int]
|
||||
|
||||
context_lens: torch.Tensor
|
||||
input_positions: torch.Tensor
|
||||
query_start_loc: torch.Tensor
|
||||
block_table: torch.Tensor
|
||||
max_query_len: int
|
||||
max_seq_lens: int
|
||||
sin: torch.Tensor
|
||||
cos: torch.Tensor
|
||||
chunked_context: Optional[ChunkedContextMetadata] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class AscendSFADecodeMetadata:
|
||||
# Input positions for rotrary embeddings since for MLA the rotary
|
||||
# position embeddings are applied inside the attention backend
|
||||
input_positions: torch.Tensor
|
||||
block_table: torch.Tensor
|
||||
seq_lens: torch.Tensor
|
||||
max_seq_lens: int
|
||||
seq_lens_list: list[int]
|
||||
actual_seq_lengths_q: torch.Tensor
|
||||
sin: torch.Tensor
|
||||
cos: torch.Tensor
|
||||
attn_mask: Optional[torch.Tensor] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class AscendSFAMetadata:
|
||||
"""Metadata for MLACommon.
|
||||
|
||||
NOTE: Please read the comment at the top of the file before trying to
|
||||
understand this class
|
||||
"""
|
||||
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
||||
# |---------- N-1 iteration --------|
|
||||
# |---------------- N iteration ---------------------|
|
||||
# |- tokenA -|......................|-- newTokens ---|
|
||||
# |---------- context_len ----------|
|
||||
# |-------------------- seq_len ---------------------|
|
||||
# |-- query_len ---|
|
||||
|
||||
num_actual_tokens: int # Number of tokens excluding padding.
|
||||
slot_mapping: torch.Tensor
|
||||
query_start_loc: torch.Tensor
|
||||
seq_lens: torch.Tensor
|
||||
block_tables: torch.Tensor
|
||||
|
||||
# New for MLA (compared to FlashAttention)
|
||||
# For handling prefill decode split
|
||||
num_decodes: int
|
||||
num_decode_tokens: int
|
||||
num_prefills: int
|
||||
|
||||
# For logging.
|
||||
num_input_tokens: int = 0 # Number of tokens including padding.
|
||||
|
||||
query_lens: Optional[list[int]] = None
|
||||
# The dimension of the attention heads
|
||||
head_dim: Optional[int] = None
|
||||
attn_mask: torch.Tensor = None
|
||||
# chunked prefill by default if no attn_states passed
|
||||
attn_state: AscendAttentionState = AscendAttentionState.ChunkedPrefill
|
||||
|
||||
decode: Optional[AscendSFADecodeMetadata] = None
|
||||
prefill: Optional[AscendSFAPrefillMetadata] = None
|
||||
enable_dbo_across_dp: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
pass
|
||||
# supported_head_sizes = AscendMLABackend.get_supported_head_sizes()
|
||||
# if self.head_dim is not None and self.head_dim \
|
||||
# not in supported_head_sizes:
|
||||
# raise ValueError(
|
||||
# f"Only {supported_head_sizes} are supported for head_dim,",
|
||||
# f"received {self.head_dim}.")
|
||||
|
||||
def split_metadata_for_multistream(
|
||||
self,
|
||||
ms_split_config: MSAttentionMetadataSplitConfig,
|
||||
) -> list["AscendSFAMetadata"]:
|
||||
"""Split metadata for multi-stream with AscendSFAMetadata"""
|
||||
return model_input_split_v1_mla_attn(
|
||||
ms_split_config=ms_split_config,
|
||||
attn_metadata=self,
|
||||
_metadata_cls=AscendMLAMetadata,
|
||||
)
|
||||
|
||||
|
||||
M = TypeVar("M", bound=AscendSFAMetadata)
|
||||
|
||||
|
||||
class AscendSFAMetadataBuilder:
|
||||
# Does this backend/builder support ACL Graphs for attention (default: no).
|
||||
aclgraph_support: ClassVar[AttentionCGSupport] = \
|
||||
AttentionCGSupport.NEVER
|
||||
"""
|
||||
NOTE: Please read the comment at the top of the file before trying to
|
||||
understand this class
|
||||
"""
|
||||
|
||||
# _attn_mask_builder = None
|
||||
def __init__(self,
|
||||
kv_cache_spec,
|
||||
layer_names,
|
||||
vllm_config: VllmConfig,
|
||||
device: torch.device,
|
||||
metadata_cls: Optional[AscendSFAMetadata] = None):
|
||||
self.metadata_cls: Optional[AscendSFAMetadata] = metadata_cls \
|
||||
if metadata_cls is not None else AscendSFAMetadata # type: ignore
|
||||
self.vllm_config = vllm_config
|
||||
self.model_config = vllm_config.model_config
|
||||
self.device = device
|
||||
scheduler_config = vllm_config.scheduler_config
|
||||
self.block_size = vllm_config.cache_config.block_size
|
||||
self.max_blocks = (vllm_config.model_config.max_model_len +
|
||||
self.block_size - 1) // self.block_size
|
||||
self.chunked_prefill_enabled = scheduler_config.chunked_prefill_enabled
|
||||
|
||||
self.speculative_config = vllm_config.speculative_config
|
||||
self.decode_threshold = 1
|
||||
if self.speculative_config:
|
||||
spec_token_num = self.speculative_config.num_speculative_tokens
|
||||
self.decode_threshold += spec_token_num
|
||||
assert self.decode_threshold <= 16, f"decode_threshold exceeded \
|
||||
npu_fused_infer_attention_score TND layout's limit of 16, \
|
||||
got {self.decode_threshold}"
|
||||
|
||||
if self.chunked_prefill_enabled:
|
||||
self.chunked_prefill_workspace_size = min(
|
||||
# Max sure there is enough for 8 full length request or at least
|
||||
# 4 pages of cache per request
|
||||
max(8 * self.model_config.max_model_len,
|
||||
4 * scheduler_config.max_num_seqs * self.block_size),
|
||||
# For long-context models try not to over-allocate limiting
|
||||
# kv-cache space, limiting it to 64k tokens,
|
||||
# which would result in the workspace being:
|
||||
# 2*(576)*(64*1024) = 144mb
|
||||
# (assuming 576 MLA head dim, and fp16)
|
||||
# which would result in up-projected context being
|
||||
# 2*(192*128)*(64*1024) = 3gb
|
||||
# (assuming 192 QK head dim, 128 heads, and fp16)
|
||||
128 * 1024)
|
||||
assert self.chunked_prefill_workspace_size >= \
|
||||
scheduler_config.max_num_seqs * self.block_size
|
||||
self.chunked_prefill_workspace = torch.empty(
|
||||
(self.chunked_prefill_workspace_size,
|
||||
self.model_config.get_head_size()),
|
||||
dtype=self.model_config.dtype,
|
||||
device=device,
|
||||
)
|
||||
self.rope_dim = self.model_config.hf_text_config.qk_rope_head_dim
|
||||
self.cos_cache = None
|
||||
self.sin_cache = None
|
||||
|
||||
def reorder_batch(self, input_batch: "InputBatch",
|
||||
scheduler_output: "SchedulerOutput") -> bool:
|
||||
# We now want to reorder the batch so that the "decode" requests are at
|
||||
# the front and the "prefill" requests are at the using the least amount
|
||||
# swaps possible. (NOTE for now we loosely use "decode" to mean requests
|
||||
# where attention is likely memory-bound and "prefill" to mean requests
|
||||
# where attention is likely compute-bound, TODO(lucas): figure out a
|
||||
# better naming here)
|
||||
decodes = []
|
||||
prefills = []
|
||||
|
||||
for i, req_id in enumerate(input_batch.req_ids):
|
||||
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
|
||||
if num_tokens <= self.decode_threshold:
|
||||
decodes.append(i)
|
||||
else:
|
||||
prefills.append(i)
|
||||
|
||||
# We hope that this is fairly minimal since decodes
|
||||
# should be around for a number of iterations so hopefully they are
|
||||
# relatively stationary (and new request are generally appended to the
|
||||
# persistent batch so already should be at the back)
|
||||
# To achieve this we loop over the decodes in descending order and
|
||||
# the prefills in ascending order. We swap decodes from the "back"
|
||||
# i.e. past where the last decode should be in the reodorered with
|
||||
# prefills from the front of the batch.
|
||||
# `decodes` and `prefills` are already in ascending order just based on
|
||||
# the above loop
|
||||
num_decodes = len(decodes)
|
||||
num_prefills = len(prefills)
|
||||
first_prefill = 0
|
||||
modified_batch = False
|
||||
|
||||
for i in range(1, min(num_decodes, num_prefills) + 1):
|
||||
# If the decode is at the "back" of the batch, i, we can swap it
|
||||
# with the prefill closest to the front of the batch
|
||||
if decodes[num_decodes - i] >= num_decodes:
|
||||
input_batch.swap_states(prefills[first_prefill],
|
||||
decodes[num_decodes - i])
|
||||
first_prefill += 1
|
||||
modified_batch = True
|
||||
else:
|
||||
break
|
||||
|
||||
# Save for next `build` call
|
||||
# TODO(lucas): this is a bit of a hack, we should probably have a
|
||||
# better way of doing this
|
||||
return modified_batch
|
||||
|
||||
def build(
|
||||
self,
|
||||
common_prefix_len: int,
|
||||
common_attn_metadata: AscendCommonAttentionMetadata,
|
||||
model: nn.Module,
|
||||
) -> AscendSFAMetadata:
|
||||
num_reqs = common_attn_metadata.num_reqs
|
||||
num_actual_tokens = common_attn_metadata.num_actual_tokens
|
||||
query_start_loc = common_attn_metadata.query_start_loc
|
||||
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
|
||||
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = \
|
||||
split_decodes_and_prefills(common_attn_metadata, decode_threshold=self.decode_threshold)
|
||||
assert num_decodes + num_prefills == num_reqs
|
||||
assert num_decode_tokens + num_prefill_tokens == num_actual_tokens
|
||||
|
||||
# Note(simon): be careful about the CPU <> GPU memory movement in this
|
||||
# function. We should avoid GPU -> CPU sync as much as possible because
|
||||
# it blocks on all previous kernels.
|
||||
device = self.device
|
||||
|
||||
block_table = (common_attn_metadata.block_table_tensor[:num_reqs])
|
||||
slot_mapping = common_attn_metadata.slot_mapping[:
|
||||
num_actual_tokens].to(
|
||||
device,
|
||||
non_blocking=True)
|
||||
input_positions = common_attn_metadata.positions[:
|
||||
num_actual_tokens].long(
|
||||
)
|
||||
|
||||
if self.cos_cache is None:
|
||||
self.cos_cache = model.model.layers[
|
||||
model.model.start_layer].self_attn.rotary_emb.cos_cached
|
||||
self.sin_cache = model.model.layers[
|
||||
model.model.start_layer].self_attn.rotary_emb.sin_cached
|
||||
if self.cos_cache.dtype != self.model_config.dtype: # type: ignore
|
||||
self.cos_cache = self.cos_cache.to( # type: ignore
|
||||
self.model_config.dtype) # type: ignore
|
||||
self.sin_cache = self.sin_cache.to( # type: ignore
|
||||
self.model_config.dtype) # type: ignore
|
||||
|
||||
query_seq_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
|
||||
query_lens = query_seq_lens_cpu[:num_reqs]
|
||||
seq_lens = common_attn_metadata.seq_lens_cpu[:num_reqs]
|
||||
num_computed_tokens_cpu = (seq_lens - query_lens)
|
||||
|
||||
prefill_metadata = None
|
||||
chunked_context_metadata = None
|
||||
if num_prefills > 0:
|
||||
reqs_start = num_decodes # prefill_start
|
||||
tokens_start = num_decode_tokens
|
||||
max_query_len = query_lens[reqs_start:].max().item()
|
||||
max_seq_lens = seq_lens[reqs_start:].max().item()
|
||||
prefill_query_start_loc = query_start_loc[
|
||||
reqs_start:] - query_start_loc[reqs_start]
|
||||
|
||||
context_lens_cpu = num_computed_tokens_cpu[reqs_start:num_reqs]
|
||||
max_context_len_cpu = context_lens_cpu.max().item()
|
||||
num_prefills_with_context_cpu = (context_lens_cpu > 0).sum().item()
|
||||
if self.chunked_prefill_enabled and max_context_len_cpu > 0:
|
||||
max_context_chunk = (self.chunked_prefill_workspace_size //
|
||||
num_prefills_with_context_cpu)
|
||||
max_context_chunk = round_down(max_context_chunk,
|
||||
self.block_size)
|
||||
|
||||
assert max_context_chunk > 0
|
||||
num_chunks = cdiv(max_context_len_cpu, max_context_chunk)
|
||||
chunk_starts = torch.arange(num_chunks, dtype=torch.int32) \
|
||||
.unsqueeze(1).expand(-1, num_prefills) * max_context_chunk
|
||||
chunk_ends = torch.min(context_lens_cpu.unsqueeze(0),
|
||||
chunk_starts + max_context_chunk)
|
||||
chunk_seq_lens = (chunk_ends - chunk_starts).clamp(min=0)
|
||||
cu_seq_lens_cpu = torch.zeros(num_chunks,
|
||||
num_prefills + 1,
|
||||
dtype=torch.int32,
|
||||
pin_memory=True)
|
||||
torch.cumsum(chunk_seq_lens,
|
||||
dim=1,
|
||||
out=cu_seq_lens_cpu[:, 1:],
|
||||
dtype=torch.int32)
|
||||
chunked_context_metadata = \
|
||||
AscendSFAPrefillMetadata.ChunkedContextMetadata(
|
||||
cu_seq_lens=cu_seq_lens_cpu.to(device, non_blocking=True),
|
||||
starts=chunk_starts.to(device, non_blocking=True),
|
||||
seq_tot=chunk_seq_lens.sum(dim=1).tolist(),
|
||||
max_seq_lens=chunk_seq_lens.max(dim=1).values.tolist(),
|
||||
chunk_seq_lens=chunk_seq_lens,
|
||||
workspace=self.chunked_prefill_workspace,
|
||||
)
|
||||
prefill_input_positions = input_positions[tokens_start:]
|
||||
cos = self.cos_cache[
|
||||
prefill_input_positions].unsqueeze( # type: ignore
|
||||
1).unsqueeze(2)
|
||||
sin = self.sin_cache[
|
||||
prefill_input_positions].unsqueeze( # type: ignore
|
||||
1).unsqueeze(2)
|
||||
actual_query_lens = torch.tensor(query_lens[reqs_start:],
|
||||
dtype=torch.int32).npu()
|
||||
query_lens_prefill_sfa = torch.cumsum(actual_query_lens,
|
||||
dim=0).to(torch.int32)
|
||||
seq_lens_prefill_sfa = seq_lens[reqs_start:].to(torch.int32).npu()
|
||||
prefill_metadata = AscendSFAPrefillMetadata(
|
||||
attn_mask=common_attn_metadata.attn_mask,
|
||||
query_lens=query_lens_prefill_sfa,
|
||||
seq_lens=seq_lens_prefill_sfa,
|
||||
context_lens=seq_lens[reqs_start:],
|
||||
input_positions=prefill_input_positions,
|
||||
block_table=block_table[reqs_start:, ...],
|
||||
max_query_len=max_query_len,
|
||||
max_seq_lens=max_seq_lens,
|
||||
query_start_loc=prefill_query_start_loc,
|
||||
chunked_context=chunked_context_metadata,
|
||||
sin=sin,
|
||||
cos=cos,
|
||||
)
|
||||
|
||||
decode_metadata = None
|
||||
if num_decodes > 0:
|
||||
# Notice that num_decodes != num_decode_tokens in SpecDecoding Scenario
|
||||
actual_seq_lengths_q = query_start_loc[1:num_decodes + 1].to(
|
||||
torch.int32).npu()
|
||||
max_seq_lens = seq_lens[:num_decodes].max().item()
|
||||
seq_lens = seq_lens[:num_decodes].to(torch.int32).npu()
|
||||
input_positions = input_positions[:num_decode_tokens]
|
||||
block_table = block_table[:num_decodes, ...]
|
||||
seq_lens_list = seq_lens.tolist()
|
||||
|
||||
cos = self.cos_cache[input_positions].unsqueeze( # type: ignore
|
||||
1).unsqueeze(2)
|
||||
sin = self.sin_cache[input_positions].unsqueeze( # type: ignore
|
||||
1).unsqueeze(2)
|
||||
|
||||
decode_metadata = AscendSFADecodeMetadata(
|
||||
input_positions=input_positions,
|
||||
block_table=block_table,
|
||||
seq_lens=seq_lens,
|
||||
seq_lens_list=seq_lens_list,
|
||||
max_seq_lens=max_seq_lens,
|
||||
attn_mask=common_attn_metadata.spec_attn_mask,
|
||||
actual_seq_lengths_q=actual_seq_lengths_q,
|
||||
sin=sin,
|
||||
cos=cos)
|
||||
|
||||
return self.metadata_cls( # type: ignore
|
||||
num_input_tokens=common_attn_metadata.num_input_tokens,
|
||||
num_actual_tokens=num_actual_tokens,
|
||||
query_lens=query_lens.tolist(),
|
||||
slot_mapping=slot_mapping,
|
||||
head_dim=self.model_config.get_head_size(),
|
||||
num_decodes=num_decodes,
|
||||
num_decode_tokens=num_decode_tokens,
|
||||
num_prefills=num_prefills,
|
||||
attn_mask=common_attn_metadata.attn_mask,
|
||||
attn_state=common_attn_metadata.attn_state,
|
||||
prefill=prefill_metadata,
|
||||
decode=decode_metadata,
|
||||
query_start_loc=query_start_loc,
|
||||
block_tables=block_table,
|
||||
seq_lens=seq_lens,
|
||||
enable_dbo_across_dp=common_attn_metadata.enable_dbo_across_dp,
|
||||
)
|
||||
|
||||
|
||||
class PrefillSFAPreprocessResult(NamedTuple):
|
||||
q_nope: Optional[torch.Tensor] = None
|
||||
q_pe: Optional[torch.Tensor] = None
|
||||
k_nope: Optional[torch.Tensor] = None
|
||||
k_pe: Optional[torch.Tensor] = None
|
||||
topk_indices: Optional[torch.Tensor] = None
|
||||
query_states: Optional[torch.Tensor] = None
|
||||
key_states: Optional[torch.Tensor] = None
|
||||
|
||||
|
||||
class DecodeSFAPreprocessResult(NamedTuple):
|
||||
q_nope: Optional[torch.Tensor] = None
|
||||
q_pe: Optional[torch.Tensor] = None
|
||||
# nope_cache: Optional[torch.Tensor] = None
|
||||
# rope_cache: Optional[torch.Tensor] = None
|
||||
topk_indices: Optional[torch.Tensor] = None
|
||||
query_states: Optional[torch.Tensor] = None
|
||||
key_states: Optional[torch.Tensor] = None
|
||||
bsz: Optional[int] = None
|
||||
|
||||
|
||||
class AscendSFAImpl(MLAAttentionImpl):
|
||||
"""
|
||||
NOTE: Please read the comment at the top of the file before trying to
|
||||
understand this class
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
scale: float,
|
||||
num_kv_heads: int,
|
||||
alibi_slopes: Optional[list[float]],
|
||||
sliding_window: Optional[int],
|
||||
kv_cache_dtype: str,
|
||||
logits_soft_cap: Optional[float],
|
||||
attn_type: str,
|
||||
kv_sharing_target_layer_name: Optional[str],
|
||||
**kwargs,
|
||||
) -> None:
|
||||
self.num_heads = num_heads
|
||||
self.head_size = head_size
|
||||
self.scale = float(scale)
|
||||
self.num_kv_heads = num_kv_heads
|
||||
self.kv_cache_dtype = kv_cache_dtype
|
||||
|
||||
# MLA Args
|
||||
self.q_lora_rank = kwargs['q_lora_rank']
|
||||
self.kv_lora_rank = kwargs['kv_lora_rank']
|
||||
self.qk_nope_head_dim = kwargs['qk_nope_head_dim']
|
||||
self.qk_rope_head_dim = kwargs['qk_rope_head_dim']
|
||||
self.qk_head_dim = kwargs['qk_head_dim']
|
||||
self.v_head_dim = kwargs['v_head_dim']
|
||||
self.rotary_emb = kwargs['rotary_emb']
|
||||
self.q_proj = kwargs['q_proj']
|
||||
self.kv_b_proj = kwargs['kv_b_proj']
|
||||
self.o_proj = kwargs['o_proj']
|
||||
self.indexer = kwargs['indexer']
|
||||
self.kv_a_proj_with_mqa = kwargs.get('kv_a_proj_with_mqa', None)
|
||||
self.kv_a_layernorm = kwargs.get('kv_a_layernorm', None)
|
||||
self.q_a_proj = kwargs.get('q_a_proj', None)
|
||||
self.q_a_layernorm = kwargs.get('q_a_layernorm', None)
|
||||
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.num_heads_per_rank = self.num_heads // self.tp_size
|
||||
if self.q_a_proj is not None:
|
||||
self.q_b_proj = self.q_proj
|
||||
else:
|
||||
self.q_b_proj = None
|
||||
|
||||
ascend_config = get_ascend_config()
|
||||
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
|
||||
self.enable_kv_nz = ascend_config.torchair_graph_config.enable_kv_nz
|
||||
|
||||
vllm_config = get_current_vllm_config()
|
||||
self.ring_mla_mask_size = 512
|
||||
self.prefill_mask = None
|
||||
|
||||
# indexer param
|
||||
self.dim = self.indexer.dim
|
||||
self.n_heads: int = self.indexer.n_heads # 64
|
||||
self.head_dim: int = self.indexer.head_dim # 128
|
||||
self.index_topk: int = self.indexer.index_topk # 2048
|
||||
self.wq_b = self.indexer.wq_b
|
||||
self.wk = self.indexer.wk
|
||||
self.weights_proj = self.indexer.weights_proj
|
||||
self.k_norm = self.indexer.k_norm
|
||||
self.softmax_scale = self.indexer.softmax_scale
|
||||
|
||||
# Adapt torch air graph mode with spec decoding.
|
||||
speculative_config = vllm_config.speculative_config
|
||||
if speculative_config is not None:
|
||||
self.spec_token_num = speculative_config.num_speculative_tokens
|
||||
assert self.spec_token_num > 0
|
||||
|
||||
self.cp_size = 1
|
||||
|
||||
def process_weights_after_loading(self, act_dtype: torch.dtype):
|
||||
|
||||
def get_layer_weight(layer):
|
||||
WEIGHT_NAMES = ("weight", "qweight", "weight_packed")
|
||||
for attr in WEIGHT_NAMES:
|
||||
if hasattr(layer, attr):
|
||||
return getattr(layer, attr)
|
||||
raise AttributeError(
|
||||
f"Layer '{layer}' has no recognized weight attribute:"
|
||||
f" {WEIGHT_NAMES}.")
|
||||
|
||||
def get_and_maybe_dequant_weights(layer: LinearBase):
|
||||
if not isinstance(layer.quant_method, UnquantizedLinearMethod):
|
||||
# NOTE: This should only be used offline, since it's O(N^3)
|
||||
eye = torch.eye(layer.input_size_per_partition,
|
||||
dtype=act_dtype,
|
||||
device=get_layer_weight(layer).device)
|
||||
dequant_weights = layer.quant_method.apply(layer,
|
||||
eye,
|
||||
bias=None)
|
||||
del eye
|
||||
# standardize to (output, input)
|
||||
return dequant_weights.T
|
||||
return layer.weight
|
||||
|
||||
# we currently do not have quantized bmm's which are needed for
|
||||
# `W_UV` and `W_UK_T`, we we just store fp16/bf16 copies and perform
|
||||
# the bmm's in 16-bit, the extra memory overhead of this is fairly low
|
||||
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj).T
|
||||
assert kv_b_proj_weight.shape == (
|
||||
self.kv_lora_rank,
|
||||
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim)), (
|
||||
f"{kv_b_proj_weight.shape=}, "
|
||||
f"{self.kv_lora_rank=}, "
|
||||
f"{self.num_heads=}, "
|
||||
f"{self.qk_nope_head_dim=}, "
|
||||
f"{self.v_head_dim=}")
|
||||
kv_b_proj_weight = kv_b_proj_weight.view(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads,
|
||||
self.qk_nope_head_dim + self.v_head_dim,
|
||||
)
|
||||
|
||||
self.kv_b_proj_w_k, self.kv_b_proj_w_v = kv_b_proj_weight.split(
|
||||
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||||
|
||||
# Convert from (L, N, V) to (N, L, V)
|
||||
self.kv_b_proj_w_v = self.kv_b_proj_w_v.transpose(0, 1).contiguous()
|
||||
# Convert from (L, N, P) to (N, P, L)
|
||||
self.kv_b_proj_w_k = self.kv_b_proj_w_k.permute(1, 2, 0).contiguous()
|
||||
|
||||
# Waiting for BMM NZ support
|
||||
# self.W_UV.data = torch_npu.npu_format_cast(self.W_UV.data, 29)
|
||||
# self.W_UK_T.data = torch_npu.npu_format_cast(self.W_UK_T.data, 29)
|
||||
|
||||
def _sfa_preprocess(self, hidden_states, kv_cache, attn_metadata,
|
||||
need_gather_q_kv):
|
||||
# SFA Preprocess:
|
||||
# 1. Perform q_a_proj and q_a_layernorm to obtain q_c
|
||||
# 2. Perform kv_a_proj_with_mqa to obtain kv_no_split
|
||||
# 3. If need_gather_q_kv, perform all_gather.
|
||||
# 4. Preprocess decode tokens, write kv cache and get:
|
||||
# decode_ql_nope, decode_q_pe, decode_k_pe, decode_k_nope
|
||||
# 5. Preprocess prefill tokens, write kv cache and get:
|
||||
# prefill_q_nope, prefill_q_pe, prefill_k_nope, prefill_k_pe, prefill_value
|
||||
has_decode = attn_metadata.num_decodes > 0
|
||||
has_prefill = attn_metadata.num_prefills > 0
|
||||
|
||||
num_decode_tokens = attn_metadata.num_decode_tokens
|
||||
num_actual_tokens = attn_metadata.num_actual_tokens
|
||||
if need_gather_q_kv:
|
||||
# q_c = get_tp_group().all_gather(q_c, 0)
|
||||
# kv_no_split = get_tp_group().all_gather(kv_no_split, 0)
|
||||
hidden_states = get_tp_group().all_gather(hidden_states, 0)
|
||||
# hidden_states_decode = hidden_states[:num_decode_tokens]
|
||||
# if self.q_a_proj is not None:
|
||||
# npu_prefetch(self.q_a_proj.weight,
|
||||
# hidden_states,
|
||||
# enabled=self.enable_prefetch)
|
||||
# ckq = self.q_a_proj(hidden_states) # q down
|
||||
# q_c = self.q_a_layernorm(ckq) # q down layernorm
|
||||
# else:
|
||||
# q_c = hidden_states
|
||||
|
||||
# kv_no_split = self.kv_a_proj_with_mqa(hidden_states) # c_kv
|
||||
# Process for shared_expert_dp
|
||||
|
||||
decode_preprocess_res = None
|
||||
prefill_preprocess_res = None
|
||||
# Preprocess for decode tokens
|
||||
if has_decode:
|
||||
q_len = 1
|
||||
hidden_states_decode = hidden_states[:num_decode_tokens]
|
||||
decode_kq = self.q_a_proj(hidden_states_decode) # q down
|
||||
decode_q_c = self.q_a_layernorm(decode_kq) # q down layernorm
|
||||
decode_kv_no_split = self.kv_a_proj_with_mqa(
|
||||
hidden_states_decode) # c_kv
|
||||
|
||||
# decode_q_c = q_c[:num_decode_tokens]
|
||||
decode_slot_mapping = attn_metadata.slot_mapping[:
|
||||
num_decode_tokens]
|
||||
# decode_kv_no_split = decode_kv_no_split[:num_decode_tokens]
|
||||
|
||||
decode_q = self.q_b_proj(decode_q_c)
|
||||
bsz, _ = decode_q.shape
|
||||
decode_q = decode_q.view(bsz, self.num_heads, 1, self.qk_head_dim)
|
||||
decode_q_nope, decode_q_pe = torch.split(
|
||||
decode_q, [self.qk_nope_head_dim, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
decode_q_nope = decode_q_nope.view(
|
||||
-1, self.num_heads, self.qk_nope_head_dim).transpose(0, 1)
|
||||
decode_q_nope = (torch.matmul(decode_q_nope,
|
||||
self.kv_b_proj_w_k).transpose(
|
||||
1,
|
||||
0).view(bsz, q_len,
|
||||
self.num_heads,
|
||||
self.kv_lora_rank))
|
||||
|
||||
# stream2 kv
|
||||
key_cache = kv_cache[0]
|
||||
value_cache = kv_cache[1]
|
||||
cos = attn_metadata.decode.cos
|
||||
sin = attn_metadata.decode.sin
|
||||
cos_q, sin_q = cos, sin
|
||||
cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
|
||||
sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
|
||||
|
||||
decode_kv_no_split = decode_kv_no_split.unsqueeze(1).unsqueeze(1)
|
||||
decode_k_rope, decode_k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
|
||||
decode_kv_no_split,
|
||||
self.kv_a_layernorm.weight,
|
||||
cos,
|
||||
sin,
|
||||
decode_slot_mapping.to(torch.int64),
|
||||
value_cache,
|
||||
key_cache,
|
||||
c_kv_scale=None,
|
||||
epsilon=self.kv_a_layernorm.variance_epsilon,
|
||||
cache_mode='PA') # adapter NZ
|
||||
# nz_block_size = 16
|
||||
# KVCACHE_NZ_DIM = 16
|
||||
# decode_k_nope = decode_k_nope.view(block_num, 1, self.kv_lora_rank // nz_block_size, block_size, nz_block_size)
|
||||
# decode_k_rope = decode_k_rope.view(block_num, 1, self.qk_rope_head_dim // KVCACHE_NZ_DIM, block_size, KVCACHE_NZ_DIM)
|
||||
|
||||
decode_q_pe = torch_npu.npu_interleave_rope(decode_q_pe, cos,
|
||||
sin) # BNSD
|
||||
|
||||
decode_q_nope = decode_q_nope.view(bsz, self.num_heads,
|
||||
self.kv_lora_rank)
|
||||
decode_q_pe = decode_q_pe.view(bsz, self.num_heads, -1)
|
||||
|
||||
topk_indices = self.indexer_select(hidden_states_decode,
|
||||
decode_q_c,
|
||||
attn_metadata=attn_metadata,
|
||||
cos=cos,
|
||||
sin=sin,
|
||||
kv_cache=kv_cache)
|
||||
|
||||
query_states = (decode_q_nope, decode_q_pe)
|
||||
key_states = (decode_k_nope, decode_k_rope)
|
||||
decode_preprocess_res = DecodeSFAPreprocessResult(
|
||||
q_nope=decode_q_nope,
|
||||
q_pe=decode_q_pe,
|
||||
# nope_cache = nope_cache,
|
||||
# rope_cache = rope_cache,
|
||||
topk_indices=topk_indices,
|
||||
query_states=query_states,
|
||||
key_states=key_states,
|
||||
bsz=bsz,
|
||||
)
|
||||
|
||||
# Preprocess for prefill tokens
|
||||
if has_prefill:
|
||||
bsz = 1
|
||||
|
||||
hidden_states_prefill = hidden_states[
|
||||
num_decode_tokens:num_actual_tokens]
|
||||
prefill_kq = self.q_a_proj(hidden_states_prefill) # q down
|
||||
prefill_q_c = self.q_a_layernorm(prefill_kq) # q down layernorm
|
||||
prefill_kv_no_split = self.kv_a_proj_with_mqa(
|
||||
hidden_states_prefill) # c_kv
|
||||
|
||||
# prefill_q_c = q_c[
|
||||
# num_decode_tokens:num_actual_tokens]
|
||||
prefill_slot_mapping = attn_metadata.slot_mapping[
|
||||
num_decode_tokens:num_actual_tokens]
|
||||
# decode_kv_no_split = decode_kv_no_split[:num_decode_tokens]
|
||||
|
||||
prefill_slot_mapping = attn_metadata.slot_mapping[
|
||||
num_decode_tokens:num_actual_tokens]
|
||||
# prefill_kv_no_split = kv_no_split[
|
||||
# num_decode_tokens:num_actual_tokens]
|
||||
# prefill_qr = prefill_q_c[num_decode_tokens:num_actual_tokens]
|
||||
prefill_qr = prefill_q_c
|
||||
prefill_q = self.q_b_proj(prefill_qr)
|
||||
prefill_q = prefill_q.view(-1, self.num_heads, self.qk_head_dim)
|
||||
prefill_q_nope, prefill_q_pe = torch.split(
|
||||
prefill_q, [self.qk_nope_head_dim, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
prefill_q_nope = prefill_q_nope.view(
|
||||
-1, self.num_heads, self.qk_nope_head_dim).transpose(0, 1)
|
||||
prefill_q_nope = (torch.matmul(prefill_q_nope,
|
||||
self.kv_b_proj_w_k).transpose(
|
||||
1,
|
||||
0).view(-1, self.num_heads,
|
||||
self.kv_lora_rank))
|
||||
prefill_q_pe = prefill_q_pe.unsqueeze(2)
|
||||
|
||||
# stream2 kv
|
||||
|
||||
nope_cache = kv_cache[0]
|
||||
rope_cache = kv_cache[1]
|
||||
cos = attn_metadata.prefill.cos
|
||||
sin = attn_metadata.prefill.sin
|
||||
cos_q, sin_q = cos, sin
|
||||
|
||||
# cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
|
||||
# sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
|
||||
|
||||
prefill_q_pe = torch_npu.npu_interleave_rope(
|
||||
prefill_q_pe, cos_q, sin_q) # BNSD
|
||||
prefill_q_pe = prefill_q_pe.squeeze(2) #BSH
|
||||
# q[..., self.qk_nope_head_dim:] = prefill_q_pe # TODO:????
|
||||
|
||||
prefill_latent_cache = prefill_kv_no_split # (B,S,N,D)
|
||||
prefill_k_pe, prefill_k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
|
||||
prefill_latent_cache.view(
|
||||
-1, 1, 1, self.kv_lora_rank + self.qk_rope_head_dim),
|
||||
self.kv_a_layernorm.weight,
|
||||
cos.view(-1, 1, 1, self.qk_rope_head_dim),
|
||||
sin.view(-1, 1, 1, self.qk_rope_head_dim),
|
||||
prefill_slot_mapping.to(torch.int64),
|
||||
rope_cache,
|
||||
nope_cache,
|
||||
k_rope_scale=None,
|
||||
c_kv_scale=None,
|
||||
k_rope_offset=None,
|
||||
c_kv_offset=None,
|
||||
epsilon=self.kv_a_layernorm.variance_epsilon,
|
||||
cache_mode="PA")
|
||||
|
||||
topk_indices = self.indexer_select(x=hidden_states_prefill,
|
||||
qr=prefill_qr,
|
||||
kv_cache=kv_cache,
|
||||
cos=cos,
|
||||
sin=sin,
|
||||
attn_metadata=attn_metadata)
|
||||
query_states = (prefill_q_nope, prefill_q_pe)
|
||||
key_states = (prefill_k_nope, prefill_k_pe)
|
||||
prefill_preprocess_res = PrefillSFAPreprocessResult(
|
||||
q_nope=prefill_q_nope,
|
||||
q_pe=prefill_q_pe,
|
||||
topk_indices=topk_indices,
|
||||
k_nope=prefill_k_nope,
|
||||
k_pe=prefill_k_pe,
|
||||
query_states=query_states,
|
||||
key_states=key_states,
|
||||
)
|
||||
|
||||
return decode_preprocess_res, prefill_preprocess_res
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor, # query in unified attn
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
|
||||
attn_metadata: M,
|
||||
need_gather_q_kv: bool = False,
|
||||
output: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
assert output is not None, "Output tensor must be provided."
|
||||
if attn_metadata is None:
|
||||
# Profiling run.
|
||||
return output.fill_(0)
|
||||
num_actual_tokens = attn_metadata.num_actual_tokens
|
||||
assert attn_metadata.num_decodes is not None and \
|
||||
attn_metadata.num_prefills is not None and \
|
||||
attn_metadata.num_decode_tokens is not None
|
||||
num_decode_tokens = attn_metadata.num_decode_tokens
|
||||
# Inputs and outputs may be padded for CUDA graphs
|
||||
output = output[:num_actual_tokens, ...]
|
||||
o_proj_input_shape = (num_actual_tokens,
|
||||
self.num_heads * self.v_head_dim)
|
||||
o_proj_input = torch.empty(o_proj_input_shape,
|
||||
dtype=hidden_states.dtype,
|
||||
device=hidden_states.device)
|
||||
|
||||
# SFA Preprocess
|
||||
decode_preprocess_res, prefill_preprocess_res = self._sfa_preprocess(
|
||||
hidden_states, kv_cache, attn_metadata, need_gather_q_kv)
|
||||
|
||||
if decode_preprocess_res is not None:
|
||||
# bsz, q_len, _, _ = query_states[0].shape
|
||||
decode_attn_output = self.apply_attention_fusion(
|
||||
query_states=decode_preprocess_res.query_states,
|
||||
key_states=decode_preprocess_res.key_states,
|
||||
attn_metadata=attn_metadata,
|
||||
topk_indices=decode_preprocess_res.topk_indices)
|
||||
o_proj_input[:num_decode_tokens] = decode_attn_output
|
||||
|
||||
if prefill_preprocess_res is not None:
|
||||
prefill_attn_output = self.apply_attention_fusion(
|
||||
query_states=prefill_preprocess_res.query_states,
|
||||
key_states=prefill_preprocess_res.key_states,
|
||||
attn_metadata=attn_metadata,
|
||||
topk_indices=prefill_preprocess_res.topk_indices)
|
||||
o_proj_input[num_decode_tokens:] = prefill_attn_output
|
||||
|
||||
output[...] = self.mla_epilog(o_proj_input, absorb=True)
|
||||
return output
|
||||
|
||||
def apply_attention_fusion(self, query_states, key_states, topk_indices,
|
||||
attn_metadata: M):
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
q_nope, q_pe = query_states
|
||||
k_nope, k_rope = key_states
|
||||
|
||||
if attn_metadata.prefill is not None:
|
||||
|
||||
prefill_metadata = attn_metadata.prefill
|
||||
|
||||
slc_fa_fusion = torch.ops.custom.npu_sparse_flash_attention(
|
||||
query=q_nope,
|
||||
key=k_nope,
|
||||
value=k_nope,
|
||||
sparse_indices=topk_indices,
|
||||
scale_value=self.scale,
|
||||
sparse_block_size=1,
|
||||
block_table=prefill_metadata.block_table,
|
||||
actual_seq_lengths_query=prefill_metadata.query_lens,
|
||||
actual_seq_lengths_kv=prefill_metadata.seq_lens,
|
||||
query_rope=q_pe,
|
||||
key_rope=k_rope,
|
||||
layout_query="TND",
|
||||
layout_kv="PA_BSND",
|
||||
sparse_mode=3,
|
||||
)
|
||||
|
||||
elif attn_metadata.decode is not None:
|
||||
decode_metadata = attn_metadata.decode
|
||||
|
||||
slc_fa_fusion = torch.ops.custom.npu_sparse_flash_attention(
|
||||
query=q_nope,
|
||||
key=k_nope,
|
||||
value=k_nope,
|
||||
sparse_indices=topk_indices,
|
||||
scale_value=self.scale,
|
||||
sparse_block_size=1,
|
||||
block_table=attn_metadata.decode.block_table,
|
||||
actual_seq_lengths_query=decode_metadata.actual_seq_lengths_q,
|
||||
actual_seq_lengths_kv=decode_metadata.seq_lens,
|
||||
query_rope=q_pe,
|
||||
key_rope=k_rope,
|
||||
layout_query="TND",
|
||||
layout_kv="PA_BSND",
|
||||
sparse_mode=3,
|
||||
)
|
||||
slc_fa_fusion = slc_fa_fusion.squeeze(1)
|
||||
|
||||
slc_fa_fusion = slc_fa_fusion.transpose(0, 1)
|
||||
|
||||
# input shape [N//attn_tp_size, T(bs*q_len), D]
|
||||
# output shape [T(bs*q_len), N//attn_tp_size, D]
|
||||
attn_output = torch.matmul(slc_fa_fusion,
|
||||
self.kv_b_proj_w_v).transpose(1, 0).reshape(
|
||||
-1, self.num_heads * self.v_head_dim)
|
||||
# Note: Considering the fusion rules of TBMM, attn_output shape requires a 3-dim shape, and
|
||||
# with appropriate tensor stride for the later 'view' operation if oproj_tp_size > 1.
|
||||
# after reshape: [T(bs*q_len), 1, N//attn_tp_size*D]
|
||||
# attn_output = attn_output.reshape(-1, self.num_heads * self.v_head_dim)
|
||||
|
||||
return attn_output
|
||||
|
||||
def mla_epilog(self,
|
||||
attn_output: torch.Tensor = None,
|
||||
absorb: bool = False):
|
||||
# TODO: need to check
|
||||
attn_output = self.o_proj(attn_output.reshape(attn_output.shape[0],
|
||||
-1),
|
||||
is_prefill=True,
|
||||
is_force_scatter=False)
|
||||
|
||||
return attn_output
|
||||
|
||||
def indexer_select(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
qr: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
|
||||
cos,
|
||||
sin,
|
||||
attn_metadata: M,
|
||||
):
|
||||
if attn_metadata.prefill is not None:
|
||||
actual_seq_lengths_query = attn_metadata.prefill.query_lens
|
||||
actual_seq_lengths_key = attn_metadata.prefill.seq_lens
|
||||
block_table = attn_metadata.prefill.block_table
|
||||
elif attn_metadata.decode is not None:
|
||||
actual_seq_lengths_query = attn_metadata.decode.actual_seq_lengths_q
|
||||
actual_seq_lengths_key = attn_metadata.decode.seq_lens
|
||||
block_table = attn_metadata.decode.block_table
|
||||
|
||||
cos_q, sin_q = cos, sin
|
||||
cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
|
||||
sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
|
||||
|
||||
# q process in new stream
|
||||
q = self.wq_b(qr) # [b,s,1536] @ [1536,64*128] = [b,s,64*128]
|
||||
q = q.view(-1, self.n_heads, self.head_dim) # [b,s,64,128]
|
||||
q_pe, q_nope = torch.split(
|
||||
q, [self.qk_rope_head_dim, self.head_dim - self.qk_rope_head_dim],
|
||||
dim=-1) # [b,s,64,64+64]
|
||||
|
||||
q_pe = q_pe.unsqueeze(2)
|
||||
q_pe = torch_npu.npu_interleave_rope(q_pe, cos_q, sin_q)
|
||||
q_pe = q_pe.squeeze(2)
|
||||
q = torch.cat([q_pe, q_nope], dim=-1) # [b*s,64,128]
|
||||
|
||||
k_proj = self.wk(x) # [b,s,7168] @ [7168,128] = [b,s,128]
|
||||
k = self.k_norm(k_proj).unsqueeze(1)
|
||||
k_pe, k_nope = torch.split(
|
||||
k, [self.qk_rope_head_dim, self.head_dim - self.qk_rope_head_dim],
|
||||
dim=-1) # [b,s,64+64]
|
||||
|
||||
k_pe = k_pe.unsqueeze(2)
|
||||
k_pe = torch_npu.npu_interleave_rope(k_pe, cos, sin)
|
||||
k_pe = k_pe.squeeze(2)
|
||||
|
||||
k = torch.cat([k_pe, k_nope], dim=-1) # [b*s,128]
|
||||
|
||||
if kv_cache is not None:
|
||||
torch_npu.npu_scatter_nd_update_(kv_cache[2].view(-1, k.shape[-1]),
|
||||
attn_metadata.slot_mapping.view(
|
||||
-1, 1),
|
||||
k.view(-1,
|
||||
k.shape[-1])) # b, s, n, d
|
||||
|
||||
weights = self.weights_proj(x)
|
||||
|
||||
topk_indices = torch.ops.custom.npu_lightning_indexer(
|
||||
query=q,
|
||||
key=kv_cache[2],
|
||||
weights=weights,
|
||||
actual_seq_lengths_query=actual_seq_lengths_query,
|
||||
actual_seq_lengths_key=actual_seq_lengths_key,
|
||||
block_table=block_table,
|
||||
layout_query="TND",
|
||||
layout_key="PA_BSND",
|
||||
sparse_count=2048,
|
||||
sparse_mode=3)
|
||||
return topk_indices
|
||||
180
vllm_npu/attention/utils.py
Normal file
180
vllm_npu/attention/utils.py
Normal file
@@ -0,0 +1,180 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, List
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from vllm.distributed.kv_transfer import (get_kv_transfer_group,
|
||||
has_kv_transfer_group,
|
||||
is_v1_kv_transfer_group)
|
||||
from vllm.forward_context import ForwardContext, get_forward_context
|
||||
|
||||
|
||||
@dataclass
|
||||
class AscendCommonAttentionMetadata:
|
||||
"""
|
||||
Per-batch attention metadata, shared across layers and backends.
|
||||
AttentionMetadataBuilder instances use it to construct per-layer metadata.
|
||||
|
||||
For many of the tensors we keep both GPU and CPU versions.
|
||||
"""
|
||||
|
||||
query_start_loc: torch.Tensor
|
||||
query_start_loc_cpu: torch.Tensor
|
||||
"""(batch_size + 1,), the start location of each request in query Tensor"""
|
||||
|
||||
seq_lens_cpu: torch.Tensor
|
||||
"""(batch_size,), the length of each request including both computed tokens
|
||||
and newly scheduled tokens"""
|
||||
|
||||
seq_lens: torch.Tensor
|
||||
"""same to seq_lens_cpu, for compatibility with some new attn metadata
|
||||
(such as GDN)."""
|
||||
|
||||
num_computed_tokens_cpu: torch.Tensor
|
||||
"""(batch_size,), the number of computed tokens for each request"""
|
||||
|
||||
num_reqs: int
|
||||
"""Number of requests"""
|
||||
num_actual_tokens: int
|
||||
"""Total number of tokens in batch"""
|
||||
|
||||
max_query_len: int
|
||||
"""Max token number of request in batch"""
|
||||
|
||||
decode_token_per_req: int
|
||||
"""decode token number per request"""
|
||||
|
||||
block_table_tensor: torch.Tensor
|
||||
|
||||
slot_mapping: torch.Tensor
|
||||
|
||||
actual_seq_lengths_q: list[int]
|
||||
|
||||
positions: torch.Tensor = None
|
||||
|
||||
attn_mask: torch.Tensor = None
|
||||
|
||||
spec_attn_mask: torch.Tensor = None
|
||||
|
||||
attn_state: Any = None
|
||||
|
||||
enable_dbo_across_dp: bool = False
|
||||
|
||||
is_only_prefill: bool = False
|
||||
|
||||
graph_pad_size: int = -1
|
||||
|
||||
# num_input_tokens refers to total number of tokens including
|
||||
# padding tokens. It is used to handle some padding operations.
|
||||
num_input_tokens: int = 0
|
||||
|
||||
# NOTE: This is a temporary solution for rotary embedding in MLA
|
||||
cos: torch.Tensor = None
|
||||
sin: torch.Tensor = None
|
||||
|
||||
|
||||
def split_decodes_and_prefills(
|
||||
common_attn_metadata: AscendCommonAttentionMetadata,
|
||||
decode_threshold: int = 1,
|
||||
) -> tuple[int, int, int, int]:
|
||||
"""
|
||||
Assuming a reordered batch, finds the boundary between prefill and decode
|
||||
requests.
|
||||
|
||||
Args:
|
||||
common_attn_metadata: AscendCommonAttentionMetadata object containing the
|
||||
batch metadata.
|
||||
decode_threshold: The maximum query length to be considered a decode.
|
||||
|
||||
Returns:
|
||||
num_decodes: The number of decode requests.
|
||||
num_prefills: The number of prefill requests.
|
||||
num_decode_tokens: The number of tokens in the decode requests.
|
||||
num_prefill_tokens: The number of tokens in the prefill requests.
|
||||
"""
|
||||
max_query_len = common_attn_metadata.max_query_len
|
||||
num_reqs = common_attn_metadata.num_reqs
|
||||
num_tokens = common_attn_metadata.num_actual_tokens
|
||||
query_start_loc = common_attn_metadata.query_start_loc_cpu
|
||||
|
||||
if max_query_len <= decode_threshold:
|
||||
return num_reqs, 0, num_tokens, 0
|
||||
|
||||
query_lens = query_start_loc[1:] - query_start_loc[:-1]
|
||||
is_prefill = query_lens > decode_threshold
|
||||
if not torch.any(is_prefill):
|
||||
return num_reqs, 0, num_tokens, 0
|
||||
|
||||
first_prefill = is_prefill.int().argmax(dim=-1).item()
|
||||
num_decodes = first_prefill
|
||||
num_prefills = num_reqs - num_decodes
|
||||
num_decode_tokens = query_start_loc[first_prefill].item()
|
||||
num_prefill_tokens = num_tokens - num_decode_tokens
|
||||
return (num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens)
|
||||
|
||||
|
||||
def wait_for_kv_layer_from_connector(layer_name: str):
|
||||
if not has_kv_transfer_group() or not is_v1_kv_transfer_group():
|
||||
return
|
||||
|
||||
connector = get_kv_transfer_group()
|
||||
|
||||
forward_context: ForwardContext = get_forward_context()
|
||||
attn_metadata = forward_context.attn_metadata
|
||||
if attn_metadata is None:
|
||||
return
|
||||
# TODO: assert ascendMetadata
|
||||
connector.wait_for_layer_load(layer_name)
|
||||
|
||||
|
||||
def maybe_save_kv_layer_to_connector(
|
||||
layer_name: str,
|
||||
kv_cache_layer: List[torch.Tensor],
|
||||
):
|
||||
if not has_kv_transfer_group() or not is_v1_kv_transfer_group():
|
||||
return
|
||||
|
||||
connector = get_kv_transfer_group()
|
||||
|
||||
forward_context: ForwardContext = get_forward_context()
|
||||
attn_metadata = forward_context.attn_metadata
|
||||
if attn_metadata is None:
|
||||
return
|
||||
# TODO: assert ascendMetadata
|
||||
connector.save_kv_layer(layer_name, kv_cache_layer, attn_metadata)
|
||||
|
||||
|
||||
def round_up(val: int, align: int) -> int:
|
||||
if align == 0:
|
||||
return 0
|
||||
return -(val // -align) * align
|
||||
|
||||
|
||||
def trans_rope_weight(weight, rope_dim):
|
||||
if rope_dim == 0:
|
||||
return weight.contiguous()
|
||||
nope_part = weight[..., :-rope_dim, :]
|
||||
rope_part = weight[..., -rope_dim:, :]
|
||||
reordered_rope_part = torch.cat(
|
||||
(rope_part[..., ::2, :], rope_part[..., 1::2, :]), dim=-2)
|
||||
return torch.cat((nope_part, reordered_rope_part), dim=-2).contiguous()
|
||||
|
||||
|
||||
def transdata(nd_mat, block_size: tuple = (16, 16)):
|
||||
r = round_up(nd_mat.shape[0], block_size[0])
|
||||
c = round_up(nd_mat.shape[1], block_size[1])
|
||||
r_pad = r - nd_mat.shape[0]
|
||||
c_pad = c - nd_mat.shape[1]
|
||||
nd_mat = F.pad(nd_mat, (0, r_pad, 0, c_pad))
|
||||
nz_mat = torch.permute(
|
||||
torch.reshape(
|
||||
nd_mat,
|
||||
(r // block_size[0], block_size[0], c // block_size[1],
|
||||
block_size[1]),
|
||||
),
|
||||
[2, 0, 1, 3],
|
||||
)
|
||||
nz_mat = torch.reshape(
|
||||
nz_mat,
|
||||
(nz_mat.shape[0], nz_mat.shape[1] * nz_mat.shape[2], nz_mat.shape[3]))
|
||||
return nz_mat
|
||||
Reference in New Issue
Block a user