fix: revert to _npu_reshape_and_cache (contiguous) and _npu_flash_attention

This commit is contained in:
2026-02-10 20:29:18 +08:00
parent a58c3fe973
commit 30cf7ccd1f

View File

@@ -322,21 +322,24 @@ class AscendAttentionBackendImpl(AttentionImpl):
Matches Huawei vllm-ascend: splits kv_cache[0]/[1] and writes via
slot_mapping indices.
"""
import torch_npu # noqa: F401
if kv_cache.numel() > 0:
if self._key_cache is None:
self._key_cache, self._value_cache = kv_cache[0], kv_cache[1]
slots = attn_metadata.slot_mapping
key_to_cache = key[:attn_metadata.num_actual_tokens]
val_to_cache = value[:attn_metadata.num_actual_tokens]
# Ensure contiguous tensors for the NPU op
key = key.contiguous()
value = value.contiguous()
slots = attn_metadata.slot_mapping.long() # indices must be long
# Use pure-PyTorch indexing (ATB reshape_and_cache may fail
# depending on environment; this is functionally identical)
block_size = self._key_cache.shape[1]
block_idx = slots // block_size
block_offset = slots % block_size
self._key_cache[block_idx, block_offset] = key_to_cache
self._value_cache[block_idx, block_offset] = val_to_cache
torch_npu._npu_reshape_and_cache(
key,
value,
self._key_cache,
self._value_cache,
slots,
)
return key, value
@@ -450,28 +453,33 @@ class AscendAttentionBackendImpl(AttentionImpl):
output: torch.Tensor,
num_tokens: int,
) -> torch.Tensor:
"""Prefill attention without KV cache (self-attention)."""
"""Prefill attention without KV cache (self-attention) using _npu_flash_attention."""
import torch_npu # noqa: F401
cum_seq_len = attn_metadata.query_start_loc[1:].tolist()
attn_out = torch_npu.npu_fusion_attention(
query[:num_tokens],
key[:num_tokens],
value[:num_tokens],
head_num=self.num_heads,
input_layout="TND",
scale=self.scale,
sparse_mode=0,
atten_mask=attn_metadata.attn_mask,
pre_tockens=2147483647,
next_tockens=0,
actual_seq_qlen=cum_seq_len,
actual_seq_kvlen=cum_seq_len,
# Huawei uses _npu_flash_attention for prefill
# Ensure contiguous inputs
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
# mask needs to be contiguous and cast to expected format if needed
# but _npu_flash_attention handles generic mask?
# Huawei code: mask = attn_metadata.attn_mask...
# We'll pass it as is, assuming AscendMetadataBuilder created it correctly.
torch_npu._npu_flash_attention(
query=query,
key=key,
value=value,
mask=attn_metadata.attn_mask,
seq_len=attn_metadata.seq_lens,
scale_value=self.scale,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
out=output
)
output[:num_tokens] = attn_out[0]
return output
return output[:num_tokens]
# -----------------------------------------------------------------
# Chunked prefill — mixed prefill+decode via npu_fusion_attention