Files
handsomezhuzhu.github.io/otherdocs/概统/06-随机变量的数字特征.md
2026-01-03 16:26:46 +08:00

4.5 KiB
Raw Blame History

六、随机变量的数字特征

1. 数学期望

定义

离散型:设$P{X = x_k} = p_k$,若$\sum_{k=1}^{\infty} x_k p_k$绝对收敛,则

E(X) = \sum_{k=1}^{\infty} x_k p_k

连续型:若$\int_{-\infty}^{\infty} xf(x)dx$绝对收敛,则

E(X) = \int_{-\infty}^{\infty} xf(x)dx

随机变量函数的期望

设$Y = g(X)$g是连续函数

  • 离散型:E(Y) = E[g(X)] = \sum_{k=1}^{\infty} g(x_k)p_k
  • 连续型:E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx

数学期望性质

  1. 设C是常数E(C) = C
  2. 设X是随机变量C是常数E(X + C) = E(X) + C
  3. 设X是随机变量C是常数E(CX) = CE(X)
  4. 设X,Y是两个随机变量则$E(X \pm Y) = E(X) \pm E(Y)$(可推广到任意有限个)
  5. 设X,Y是相互独立的随机变量则$E(XY) = E(X)E(Y)$(可推广到任意有限个)

2. 方差与标准差

定义D(X) = E\{[X - E(X)]^2\}

计算公式D(X) = E(X^2) - [E(X)]^2

标准差\sigma(X) = \sqrt{D(X)}

方差的计算

离散型:D(X) = \sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k

连续型:D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x)dx

方差性质

  1. 设C是常数D(C) = 0
  2. 设X是随机变量C是常数则$D(CX) = C^2D(X)$D(X + C) = D(X)
  3. 设X,Y是两个随机变量D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) 特别地若X,Y相互独立D(X \pm Y) = D(X) + D(Y)
  4. $D(X) = 0$的充要条件是X以概率1取常数$E(X)$,即P\{X = E(X)\} = 1

3. 协方差

定义Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}

计算公式Cov(X,Y) = E(XY) - E(X)E(Y)

性质

  1. $Cov(X,Y) = Cov(Y,X)$(对称性)
  2. $Cov(X,C) = 0$C为常数
  3. Cov(X,X) = D(X)
  4. $Cov(aX, bY) = ab \cdot Cov(X,Y)$a,b是常数
  5. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$(双线性)
  6. 若X,Y相互独立Cov(X,Y)=0

与方差的关系

D(X + Y) = D(X) + D(Y) + 2Cov(X,Y)

4. 相关系数

定义

\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}

性质

  1. |\rho_{XY}| \leq 1
  2. $|\rho_{XY}| = 1$的充要条件是存在常数a,b使$P{Y = a + bX} = 1$(线性关系)
  3. 若X,Y相互独立则$\rho_{XY} = 0$(不相关)
  4. 不相关 ≠ 独立$\rho_{XY} = 0$只说明X,Y没有线性关系可能有非线性关系

不相关的等价条件(以下四条等价):

  • \rho_{XY} = 0
  • Cov(X,Y) = 0
  • E(XY) = E(X)E(Y)
  • D(X + Y) = D(X) + D(Y)

5. 矩

定义设X和Y是随机变量

矩的类型 定义 说明
k阶原点矩 $E(X^k)$k = 1,2,... 一阶原点矩就是期望E(X)
k阶中心矩 $E{[X - E(X)]^k}$k = 2,3,... 二阶中心矩就是方差D(X)
k+l阶混合矩 $E(X^k Y^l)$k,l = 1,2,...
k+l阶混合中心矩 E\{[X-E(X)]^k[Y-E(Y)]^l\} 二阶混合中心矩就是协方差Cov(X,Y)

6. 切比雪夫不等式

设$E(X)=\mu$$D(X)=\sigma^2$存在,则对任意$\varepsilon>0$

P\{|X-\mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}

等价地,

P\{|X-\mu| < \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}

7. 数字特征典型例题

:设随机变量$X \sim N(\mu, \sigma^2)$$Y \sim N(\mu, \sigma^2)$且设X,Y相互独立求$Z_1 = \alpha X + \beta Y$和$Z_2 = \alpha X - \beta Y$的相关系数(其中$\alpha, \beta$是不为零的常数)。

:由于$X, Y \sim N(\mu, \sigma^2)$,可得

E(X) = E(Y) = \mu, \quad D(X) = D(Y) = \sigma^2

$Z_1$和$Z_2$的相关系数:

\rho_{Z_1Z_2} = \frac{E(Z_1Z_2) - E(Z_1) \cdot E(Z_2)}{\sqrt{D(Z_1)} \cdot \sqrt{D(Z_2)}}

E(Z_1) = E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y) = (\alpha + \beta)\mu

E(Z_2) = E(\alpha X - \beta Y) = \alpha E(X) - \beta E(Y) = (\alpha - \beta)\mu

E(Z_1Z_2) = E[(\alpha X + \beta Y)(\alpha X - \beta Y)] = E(\alpha^2 X^2 - \beta^2 Y^2) = \alpha^2 E(X^2) - \beta^2 E(Y^2) = (\alpha^2 - \beta^2)(\sigma^2 + \mu^2)

D(Z_1) = D(\alpha X + \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2

D(Z_2) = D(\alpha X - \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2

于是

\rho_{Z_1Z_2} = \frac{(\alpha^2 - \beta^2)(\sigma^2 + \mu^2) - (\alpha + \beta)\mu(\alpha - \beta)\mu}{\sqrt{(\alpha^2 + \beta^2)\sigma^2} \cdot \sqrt{(\alpha^2 + \beta^2)\sigma^2}} = \frac{(\alpha^2 - \beta^2)\sigma^2}{(\alpha^2 + \beta^2)\sigma^2} = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}