Files
handsomezhuzhu.github.io/otherdocs/概统/07-抽样分布.md
2026-01-03 16:26:46 +08:00

98 lines
3.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 七、抽样分布
设 $X_1, X_2, ..., X_n$ 是来自总体的简单随机样本
**样本均值**$\bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i$
**样本方差**$S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2$
**样本标准差**$S = \sqrt{S^2}$
**常用结论**(设总体$E(X)=\mu$$D(X)=\sigma^2$
1. $E(X_i) = \mu$$D(X_i) = \sigma^2$
2. $E(\bar{X}) = \mu$$D(\bar{X}) = \frac{\sigma^2}{n}$
3. $E\left(\sum_{i=1}^{n}X_i\right) = n\mu$$D\left(\sum_{i=1}^{n}X_i\right) = n\sigma^2$
4. $E(S^2) = \sigma^2$
---
## 0. 中心极限定理
设$X_1, X_2, ..., X_n$独立同分布,且$E(X_i)=\mu$$D(X_i)=\sigma^2$则当n充分大时
$$\sum_{i=1}^{n}X_i \approx N(n\mu, n\sigma^2), \quad \bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
**二项分布特例**:若$X \sim B(n,p)$且n充分大则$X \approx N(np, np(1-p))$
---
## 1. χ²分布 (卡方分布)
**定义**:设 $X_1, X_2, ..., X_n$ 独立同分布于 N(0,1),则
$$\chi^2 = \sum_{i=1}^{n}X_i^2 \sim \chi^2(n)$$
**期望与方差**
- $E(\chi^2) = n$
- $D(\chi^2) = 2n$
**可加性**$\chi_1^2(n_1) + \chi_2^2(n_2) \sim \chi^2(n_1+n_2)$(独立时)
**重要定理**:设总体 $X \sim N(\mu, \sigma^2)$
$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$$
---
## 2. t分布学生t分布
**定义**:设 $X \sim N(0,1)$$Y \sim \chi^2(n)$X与Y独立
$$t = \frac{X}{\sqrt{Y/n}} \sim t(n)$$
**性质**
- 关于0对称
- n→∞ 时趋近于 N(0,1)
- 比正态分布"矮胖"(尾部更厚)
**重要定理**:设总体 $X \sim N(\mu, \sigma^2)$
$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
**应用**:总体方差未知时,对均值的推断
---
## 3. F分布
**定义**:设 $X \sim \chi^2(n_1)$$Y \sim \chi^2(n_2)$X与Y独立
$$F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$$
**性质**
- $\frac{1}{F(n_1,n_2)} \sim F(n_2, n_1)$
- $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_\alpha(n_2, n_1)}$
**重要定理**:设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$$Y \sim N(\mu_2, \sigma_2^2)$
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1, n_2-1)$$
**应用**:两总体方差比的推断
---
## 4. 正态总体的抽样分布总结
设 $X \sim N(\mu, \sigma^2)$$X_1, ..., X_n$ 为样本
| 条件 | 统计量 | 分布 |
|------|--------|------|
| σ²已知 | $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ | N(0,1) |
| σ²未知 | $\frac{\bar{X}-\mu}{S/\sqrt{n}}$ | t(n-1) |
| μ已知 | $\frac{\sum(X_i-\mu)^2}{\sigma^2}$ | χ²(n) |
| μ未知 | $\frac{(n-1)S^2}{\sigma^2}$ | χ²(n-1) |
---
## 5. **重点:单正态抽样分布(整体背熟)**
设 $X_1, X_2, \ldots, X_n$ 来自正态总体 $X \sim N(\mu, \sigma^2)$,则
1. $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
2. $\bar{X}$ 与 $S^2$ 相互独立
3. $\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$
4. $\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\sigma^2} \sim \chi^2(n)$
5. $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$