
数字电路基础

一、逻辑代数定律和计算规则

定律/规则
名称

表达式 解释

恒等律 A+ 0 = A

A ⋅ 1 = A

任何变量与0相加或与1相乘等
于自身

零律 A+ 1 = 1
A ⋅ 0 = 0

任何变量与1相加或与0相乘等
于1或0

幂等律 A+A = A

A ⋅A = A

任何变量与自身相加或相乘等于

自身

互补律 A+A = 1

A ⋅A = 0

任何变量与其补码相加等于1，
相乘等于0

交换律

加法交换

律

A+B = B+A 加法运算的交换律

乘法交换

律

A ⋅B = B ⋅A 乘法运算的交换律

结合律

加法结合

律

(A+B) + C = A+ (B+ C) 加法运算的结合律

乘法结合

律

(A ⋅B) ⋅ C = A ⋅ (B ⋅ C) 乘法运算的结合律

分配律

乘法分配

律

A ⋅ (B+ C) = A ⋅B+A ⋅ C 乘法对加法的分配律

加法分配

律

A+ (B ⋅ C) = (A+B) ⋅ (A+ C) 加法对乘法的分配律

吸收律

吸收律1 A+A ⋅B = A 吸收律的第一种形式

吸收律2 A ⋅ (A+B) = A 吸收律的第二种形式

德摩根定
律

德摩根定

律1
A+B = A ⋅B 逻辑加法的德摩根定律

–

–

–––

定律/规则
名称

表达式 解释

德摩根定
律2

A ⋅B = A+B 逻辑乘法的德摩根定律

简化定律

简化定律1 A+A ⋅B = A+B 简化逻辑表达式

简化定律2 A ⋅ (A+B) = A ⋅B 简化逻辑表达式

共识定律

共识定律
(积之和形
式)

AB+AC +BC = AB+AC 较难，常用于逻辑化简。项
BC 是 AB 和 A C 的共识项，
是冗余的。

共识定律
(和之积形
式)

(A+B)(A+ C)(B+ C) = (A+B)(A+ C) 较难，常用于逻辑化简。项
(B+C) 是 (A+B) 和 (A +C) 的
共识项，是冗余的。

反演定律

反演定律 A = A 变量的双重否定等于自身

推导过程

–––

–

–

––

––

––

1. 基本定律
恒等律：A+ 0 = A 和 A ⋅ 1 = A 是逻辑代数的基本定义。
零律：A+ 1 = 1 和 A ⋅ 0 = 0 也是逻辑代数的基本定义。
幂等律：A+A = A 和 A ⋅A = A 是因为逻辑加法和乘法运算的特性。

互补律：A+A = 1 和 A ⋅A = 0 是逻辑变量和其补码的定义。––

2. 交换律
加法交换律：A+B = B+A 是逻辑加法的交换特性。
乘法交换律：A ⋅B = B ⋅A 是逻辑乘法的交换特性。

3. 结合律
加法结合律：(A+B) + C = A+ (B+ C) 是逻辑加法的结合特性。
乘法结合律：(A ⋅B) ⋅ C = A ⋅ (B ⋅ C) 是逻辑乘法的结合特性。

4. 分配律
乘法分配律：A ⋅ (B+ C) = A ⋅B+A ⋅ C 是逻辑乘法对加法的分配特性。
加法分配律：A+ (B ⋅ C) = (A+B) ⋅ (A+ C) 是逻辑加法对乘法的分配特性。

5. 吸收律
吸收律1：A+A ⋅B = A 可以从 A+A ⋅B = A ⋅ (1 +B) = A ⋅ 1 = A 推导得出。
吸收律2：A ⋅ (A+B) = A 可以从 A ⋅ (A+B) = A ⋅A+A ⋅B = A+A ⋅B = A 推导
得出。

6. 德摩根定律
德摩根定律1：A+B = A ⋅B 是逻辑加法的德摩根定律。–––

二、基本门电路

1. 非门
Y = A

2. 与门
Y = A ⋅B

真值表:

输入 A 输入 B 输出 Y

0 0 0

0 1 0

1 0 0

1 1 1

3. 或门
Y = A+B

真值表:

输入 A 输入 B 输出 Y

0 0 0

0 1 1

德摩根定律2：A ⋅B = A+B 是逻辑乘法的德摩根定律。–––

7. 简化定律
简化定律1：A+A ⋅B = A+B 可以从
A+A ⋅B = (A+A) ⋅ (A+B) = 1 ⋅ (A+B) = A+B 推导得出。

–

––

简化定律2：A ⋅ (A+B) = A ⋅B 可以从
A ⋅ (A+B) = A ⋅A+A ⋅B = 0 +A ⋅B = A ⋅B 推导得出。

–

––

8. 共识定律
共识定律：(A+B) ⋅ (A+ C) = (A+B) ⋅ (A+ C) ⋅ (B+ C) 可以从
(A+B) ⋅ (A+ C) = (A+B) ⋅ (A+ C) ⋅ (B+ C) 推导得出，因为
(A+B) ⋅ (A+ C) ≤ (B+ C)。

––

––

–

9. 反演定律

反演定律：A = A 是逻辑变量的双重否定特性。
––

–

输入 A 输入 B 输出 Y

1 0 1

1 1 1

4. 与非门

与非门是“与门”和“非门”的结合。

Y = A ⋅B

真值表:

输入 A 输入 B 输出 Y

0 0 1

0 1 1

1 0 1

1 1 0

5. 或非门
或非门是“或门”和“非门”的结合。

Y = A+B

真值表:

输入 A 输入 B 输出 Y

0 0 1

0 1 0

1 0 0

1 1 0

6. 异或门

当两个输入不相同时，输出为高电平（1）；当两个输入相同时，输出为低电平（0）。这也被
称为“半加器”的求和逻辑。

逻辑表达式:

Y = A⊕B

真值表:

–

–

输入 A 输入 B 输出 Y

0 0 0

0 1 1

1 0 1

1 1 0

三、编码

1. 原码、反码和补码
为了在二进制系统中表示正负数，我们通常会使用最高位作为符号位。

原码

反码

反码的出现是为了简化减法运算。

符号位为 0 代表正数。
符号位为 1 代表负数。

规则: 符号位 + 数值的绝对值的二进制表示。
正数: 符号位为0，其余位表示数值。

例如，+12 的原码是 00001100。
负数: 符号位为1，其余位表示数值。

例如，−12 的原码是 10001100。
缺点:
1. 零的表示不唯一：+0 是 00000000，−0 是 10000000。
2. 进行加减法运算时，需要单独处理符号位，硬件实现复杂。

规则:
正数的反码与其原码相同。

负数的反码是在其原码的基础上，符号位不变，其余各位按位取反。

示例:
+12 的原码是 00001100，其反码也是 00001100。
−12 的原码是 10001100，其反码是 11110011 (符号位1不变，后面7位 0001100 按
位取反得到 1110011)。

缺点:
仍然存在“双零”问题：+0 的反码是 00000000，−0 的反码是 11111111。

补码

补码是现代计算机系统中最常用的有符号数表示法，它解决了原码和反码的缺点。

总结表格 (以 ±12 为例)

值 原码 反码 补码

+12 00001100 00001100 00001100

-12 10001100 11110011 11110100

2. BCD 码

BCD码是用二进制来表示十进制数的一种编码方式。它与直接将十进制数转换为二进制数不
同。

跨零运算会产生循环进位问题。

规则:
正数的补码与其原码相同。

负数的补码是其反码加 1。
求负数补码的方式:

从其原码的最低位（最右边）向左找，找到的第一个 1 保持不变，这个 1 左边的所
有位（不含符号位）按位取反，符号位仍为1。

示例:
+12 的补码是 00001100。
−12 的补码求法：
1. 原码: 10001100
2. 反码: 11110011
3. 加 1: 11110011 + 1 = 11110100。

优点:
1. 零的表示唯一: 00000000。
2. 简化运算: 可以将减法运算转换为加法运算。例如，计算 A−B 等同于计算 A+ (−B)
的补码。

3. 对于一个 n 位的补码系统，其表示范围为 [−2n−1, 2n−1− 1]。例如，8位补码的范围是
[−128, 127]。

规则: 用 4 位二进制数来表示一位十进制数（0-9）。最常用的是 8421 BCD 码，其中各位
的权值从高到低分别是 8、4、2、1。
特点:

它介于二进制和十进制之间，便于人机交互（如数码管显示、计算器）。

运算比纯二进制复杂，但比直接处理十进制字符简单。

BCD 码对照表

十进制 BCD 码

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

示例: 将十进制数 129 转换为 BCD 码。

四、加法器、编码器、译码器、选择器、比较器

五、触发器

1. RS 触发器

由于用4位二进制表示一位十进制数，所以 1010 到 1111 这 6 个码是无效或非法
的。

1. 将每一位十进制数分开： 1、 2、 9。

2. 将每一位分别转换为对应的4位BCD码：
1 → 0001

2 → 0010

9 → 1001

3. 将它们组合起来：

(129)10 = (0001 0010 1001)BCD

对比: 如果将 (129)₁₀ 直接转换为纯二进制，结果是 10000001。这与它的 BCD 码是完全
不同的。

最基本的触发器，但存在一个不确定状态，在实际应用中较少直接使用。

功能表

这张表描述了在不同输入下，下一个状态 Qn+1 是什么。

S R Qn+1 功能

0 0 Qn 保持

0 1 0 复位/置0

1 0 1 置位/置1

1 1 ? 禁止/不定

特性方程

Qn+1 = S +RQn (约束条件: S ⋅R = 0)

激励表

这张表在电路设计时非常有用，它回答了“为了让状态从 Qn 变为 Qn+1，输入 S 和 R 应该是什
么？”。（X表示Don't Care，即0或1均可）

Qn Qn+1 S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

2. JK 触发器

JK 触发器是 RS 触发器的改进版，它解决了 RS 触发器的“禁止”状态问题，是最通用的触发
器。

功能表

输入: S (Set, 置位), R (Reset, 复位)

输出: Q (状态输出), Q (反向输出)–

–

输入: J (功能类似 S), K (功能类似 R)
输出: Q, Q–

J K Qn+1 功能

0 0 Qn 保持

0 1 0 复0

1 0 1 置1

1 1 Qn 翻转

JK触发器将RS触发器的禁止状态（1,1输入）变成了一个非常有用的翻转功能。

特性方程

Qn+1 = JQn +KQn

激励表

Qn Qn+1 J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

3. D 触发器
D 触发器的功能非常直接：在时钟脉冲到来时，将输入 D 的值传递给输出 Q。它常被用作数
据锁存器或移位寄存器的基本单元。

功能表

D Qn+1 功能

0 0 置0

1 1 置1

无论当前状态 Qn 是什么，下一个状态 Qn+1 都等于时钟边沿到来时的 D 输入值。

特性方程

Qn+1 = D

–

––

输入: D (Data)

输出: Q, Q–

激励表

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

4. T 触发器

T 触发器是一个翻转触发器。当输入 T = 1 时，状态翻转；当 T = 0 时，状态保持不变。它常
用于构建计数器。

功能表

T Qn+1 功能

0 Qn 保持

1 Qn 翻转

特性方程

Qn+1 = T ⊕Qn = TQn + TQn

激励表

Qn Qn+1 T

0 0 0

0 1 1

1 0 1

1 1 0

输入: T

输出: Q, Q–

–

––

