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数学分析完整笔记

第一章 序章

第二章 函数

三角函数和反函数

倒数关系：

cos θ ⋅ sec θ = 1

sin θ ⋅ csc θ = 1

tan θ ⋅ cot θ = 1

商数关系：

tan θ =
sin θ
cos θ

cot θ =
cos θ
sin θ

平方关系：

sin2 θ+ cos2 θ = 1

1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ

积化和差公式：

sinα cosβ =
1
2
[  sin(α+ β) + sin(α− β)]

cosα sinβ =
1
2
[  sin(α+ β) − sin(α− β)]

cosα cosβ =
1
2
[  cos(α+ β) + cos(α− β)]

sinα sinβ = −
1
2
[  cos(α+ β) − cos(α− β)]

暂无

反函数



和差化积：

三角函数

反三角函数

1. 正弦函数的和差化积公式：

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β

2

sinα− sinβ = 2 cos
α+ β

2
sin

α− β

2

2. 余弦函数的和差化积公式：

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β

2

cosα− cosβ = 2 sin
α+ β

2
sin

α− β

2

余切函数： 定义：

cot θ =
cos θ
sin θ

在直角三角形中

cot θ =
邻边

对边

值域：R，定义域：θ ≠ kπ, k ∈ Z

正割函数： 定义：

sec θ =
1

cos θ

值域：(−∞, 1] ∪ [1,∞)，定义域：θ ≠ kπ+
π

2
, k ∈ Z。

余割函数： 定义：

csc θ =
1
sin θ

值域：(−∞, 1] ∪ [1,∞)，定义域：θ ≠ kπ, k ∈ Z。

1. 反正弦函数： 符号：

y = arcsinx

定义域：[−1, 1]，值域：[− π

2
,
π

2
] 性质：

sin(arcsinx) = x,x ∈ [1, 1]



第三章 极限
数列的极限

数列极限的ε−N语言证明

arcsin(sin y) = y, y ∈ [− π

2
,
π

2
]

2. 反余弦函数： 符号：

y = arccosx

定义域：[−1, 1]，值域：[0,π] 性质：

cos(arccosx) = x,x ∈ [−1, 1]

arccos(cos y) = y, y ∈ [0,π]

3. 反正切函数： 符号：

y = arctanx

定义域：R，值域：(− π
2 ,

π
2 ) 性质：

tan(arctanx) = x,x ∈ R

arctan(tan y) = y, y ∈ (− π

2
,
π

2
)

4. 反余切函数： 符号：

y = arccotx

定义域：R，值域：(0,π) 性质：

cot(arccotx) = x,x ∈ R

arccot(cot y) = y, y ∈ (0,π)

1. 定义 数列{an}极限是A（记为limn→∞ an = A）的ε−N定义：对于任意给定的正数ε > 0

，存在正整数N，使得当n > N时，|an −A| < ε成立。

2. 证明步骤
步骤一：给定ε > 0

步骤二：寻找N

通过分析|an −A| < ε，对an表达式变形来确定与ε有关的正整数N。

例如，对于数列an =
1
n
证明 lim

n→∞
an = 0，由|an − 0| = |

1
n
− 0| =

1
n
，要使

1
n
< ε

，得n >
1
ε
，可取N = [

1
ε
] + 1（[x]表示不超过 x 的最大整数）。

步骤三：验证n > N时|an −A| < ε成立



利用夹迫性证明数列极限

函数的极限

仍以上例说明，当n > N = [
1
ε
] + 1时，n > 1

ε
，则

1
n
< ε，即|an − 0| < ε，证得

lim
n→∞

1
n
= 0。

1. 夹迫性定理 若存在三个数列{an}，{bn}，{cn}，满足当n足够大（比如n > N0，N0为某个

正整数）时，an ≤ bn ≤ cn，且limn→∞ an = limn→∞ cn = A，那么limn→∞ bn = A。

1. 当x→ 0时

x与sinx是等价无穷小：

根据等价无穷小的定义，

lim
x→0

sinx
x

= 1

x与tanx是等价无穷小：

同样有

lim
x→0

tanx
x

= 1

1 − cosx与 1
2 x

2是高阶等价无穷小：

由

lim
x→0

1 − cosx
1
2 x

2
= 1

补充：

x− sinx ∼
1
6
x3

1. 当x→ +∞时

lnx与√x的关系：

对于任意正整数n，

lim
x→+∞

lnx
xn

= 0

xn与ex（n为常数）：

对于任意常数n，

lim
x→+∞

xn

ex
= 0



arctanx→ sinx→ x→ arcsinx→ tanx      他们相差  
x3

6

重点：！！！！！（如果考试要用的话就要用泰勒展开写出来）

函数连续性

暂无

无限小量和无限大量

暂无

第四章 微分和微商
各种函数的导数

以下是重点

9. (tanx)′ = sec2 x

10. (cotx)′ = −csc2 x

11. (secx)′ = secx tanx

12. (cscx)′ = −cscx cotx

13. (arcsinx)′ =
1

√1 − x2

14. (arccosx)′ = −
1

√1 − x2

15. (arctanx)′ =
1

1 + x2

16. (arccotx)′ = −
1

1 + x2

当x→ 0时

1. (kx)′ = k

2. (xn)′ = nxn−1

3. (ax)′ = ax ln a

4. (ex)′ = ex

5. (loga x)′ = 1
x ln a

6. (lnx)′ = 1
x

7. (sinx)′ = cosx

8. (cosx)′ = −sinx



莱布尼兹公式

公式表述

若函数u(x)和v(x)都有n阶导数，则

(uv)(n) =
n

∑
k=0

C k
nu

(n−k)v(k)

其中：

应用举例 求y = x2ex的n阶导数。 令u = x2，v = ex u′ = 2x，u′′ = 2，u(k) = 0 for k > 2

v(k) = ex for all k ⩾ 0 根据莱布尼兹公式(x2ex)(n) = C 0
nx

2ex + C 1
n(2x)e

x + C 2
n(2)e

x 即
(x2ex)(n) = (x2 + 2nx+ n(n− 1))ex

第五章 中值定理
拉格朗日中值定理

定理内容

应用举例 例如，证明不等式
b− a

1 + b2
< arctan b− arctan a <

b− a

1 + a2
，其中a < b。 设

f(x) = arctanx，f(x)在[a, b]上连续，在(a, b)内可导，且f ′(x) =
1

1 + x2
。 根据拉格朗日

1. 双曲正弦函数（sinh x）

定义：sinhx =
ex − e−x

2
导数：(sinhx)′ = coshx

2. 双曲余弦函数（cosh x）

定义：coshx =
ex + e−x

2
导数：(coshx)′ = sinhx

C k
n =

n!
k!(n− k)!

是二项式系数

u(n−k)表示u的(n− k)阶导数，当n− k = 0时，u(0) = u

v(k)表示v的k阶导数，当k = 0时，v(0) = v

若函数y = f(x)满足：

在闭区间[a, b]上连续；

在开区间(a, b)内可导。

那么在(a, b)内至少存在一点ξ，使得

f(b) − f(a) = f ′(ξ)(b− a)



中值定理，存在ξ ∈ (a, b)，使得arctan b− arctan a =
1

1 + ξ2
(b− a)。 因为

1
1 + b2

<
1

1 + ξ2
<

1
1 + a2

 所以
b− a

1 + b2
< arctan b− arctan a <

b− a

1 + a2
。

洛必达

没什么好说的

函数的极限

函数凹凸性

利用二阶导数判定 设函数y = f(x)在区间I内具有二阶导数。 如果f ′′(x) > 0，x ∈ I，那么函

数y = f(x)在区间I上是凹的。 如果f ′′(x) < 0，x ∈ I，那么函数y = f(x)在区间I上是凸的。

定义5.2 设f(x)在(a, b)有定义。若对任意x1，x2 ∈ (a, b)和任意λ ∈ (0, 1)，有

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

则称f(x)在(a, b)为下凸函数；若对任意x1，x2 ∈ (a, b)和任意λ ∈ (0, 1)，有

f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2)

则称f(x)在(a, b)为上凸函数。

函数拐点

判定方法

二阶导数不存在的点也可能是拐点

1. 函数极限存在的第一充分条件
内容：设函数f(x)在x0的某去心邻域U̇(x0, δ)内有定义。

若当x ∈ (x0 − δ,x0)时，f(x)单调递增且有上界，当x ∈ (x0,x0 + δ)时，f(x)单调

递减且有下界，则limx→x0 f(x)存在。

反之，若当x ∈ (x0 − δ,x0)时，f(x)单调递减且有下界，当x ∈ (x0,x0 + δ)时，

f(x)单调递增且有上界，则limx→x0 f(x)存在。

2. 函数极限存在的第二充分条件（重点看这个）
内容：设函数y = f(x)在点x0处具有二阶导数且f ′(x0) = 0，f ′′(x0) ≠ 0。

若f ′′(x0) > 0，则函数y = f(x)在x = x0处取得极小值；

若f ′′(x0) < 0，则函数y = f(x在x = x0处取得极大值。

二阶导数法

一般地，若函数y = f(x)在点x0处二阶可导，且在x0的某邻域内二阶导数f ′′(x)变号

（即函数的凹凸性发生改变），同时f ′′(x0) = 0，那么点(x0, f(x0))是函数y = f(x)的

一个拐点。



第六章&第七章&第八章 积分

不定积分基本公式

∫ kdx = kx+ c

∫ xndx =
xn+1

n+ 1
+ c

∫ exdx = ex + c

∫ axdx =
ax

ln a
+ c

∫ 1
x
dx = ln |x| + c

∫ sinxdx = −cosx+ c

∫ cosxdx = sinx+ c

∫ tanxdx = − ln | cosx| + c

∫ cotxdx = ln | sinx| + c

∫ cscxdx = ln | cscx− cotx| + c

∫ secxdx = ln | secx+ tanx| + c

∫ x2dx =
1
3
x3 + c

∫ 1
x2

dx = −
1
x
+ c

∫ 1
sinx

dx = ∫ csc2 xdx = −cotx+ c

∫ 1
cos2 x

dx = ∫ sec2 xdx = tanx+ c

∫ 1
1 + x2

dx = arctanx+ c

∫ 1

√1 − x2
dx = arcsinx+ c

常见积分公式



∫ secx tanxdx = secx+ c

∫ cscx cotxdx = −cscx+ c

∫ dx

a2 + x2
=
1
a
arctan

x

a
+ c

∫ dx

x2 − a2
=

1
2a
ln |

x− a

x+ a
| + c

∫ dx

√a2 − x2
= arcsin

x

a
+ c

∫ dx

√x2 + a2
= ln |x+√x2 + a2| + c

∫ dx

√x2 − a2
= ln |x+√x2 − a2| + c

∫ x2

1 + x2
dx =

1
2
ln(1 + x2) + c

∫ 1
1 + x2

dx = arctanx+ c

补充

∫ x2

1 + x2
dx = x− arctanx+ C

过程如下（懂了吧）

∫ lnxdx = x lnx− x+ C

换元积分

x2

1 + x2
=

x2 + 1 − 1
1 + x2

=
x2 + 1
1 + x2

−
1

1 + x2

= 1 −
1

1 + x2

1. 第一类换元法（凑微分法）

示例：计算∫ 2x cos(x2)dx。

令u = x2，则du = 2xdx。

原积分∫ 2x cos(x2)dx = ∫ cosudu = sinu+ C。

再把u = x2代回，得到sin(x2) + C。

常见的凑微分形式：



∫ f(ax+ b)dx =
1
a
∫ f(ax+ b)d(ax+ b)(a ≠ 0)

∫ f(xn)xn−1dx =
1
n
∫ f(xn)d(xn)。

∫ f(sinx) cosxdx = ∫ f(sinx)d(sinx)。

2. 第二类换元法
根式代换

当被积函数中含有√a2 − x2(a > 0)时，可令x = a sin t，t ∈ (− π

2
,
π

2
)。

示例：计算∫ 1

√1 − x2
dx。

令x = sin t，t ∈ (− π

2
,
π

2
)，则dx = cos tdt。

原积分

∫ 1

√1 − x2
dx = ∫ 1

√1 − sin2 t
cos tdt = ∫ 1dt = t+ C

因为x = sin t，所以t = arcsinx，最终结果为arcsinx+ C

当被积函数中含有√x2 + a2(a > 0)时，可令x = a tan t，t ∈ (− π

2
,
π

2
)。

当被积函数中含有√x2 − a2(a > 0)时，可令x = a sec t，t ∈ (0, π
2
) ∪ ( π

2
,π)。

倒代换

当分母的次数比分子的次数高很多时，可考虑倒代换，即令x =
1
t
。

示例：计算∫ 1
x4(1 + x2)

dx。

∫ 1
x4(1 + x2)

dx = ∫ t4

1 + t2
(− 1

t2
)dt = −∫ t2

1 + t2
dt

令x =
1
t
，则dx = −

1
t2
dt。

原积分

进一步化简

= −∫ (1 − 1
1 + t2

)dt = −t+ arctan t+ C

再把t =
1
x
代回，得到−

1
x
+ arctan

1
x
+ C。

3. 三角代换与双曲代换（补充方法）
三角代换：三角代换主要是利用三角函数之间的关系 sin2 t+ cos2 t = 1，

sec2 t− tan2 t = 1等来化简根式。

双曲代换(暂时没遇过)：

双曲函数定义为sinhx =
ex − e−x

2
，coshx =

ex + e−x

2
，且cosh2 x− sinh2 x = 1

。



分部积分法

分部积分公式

有理函数的积分

就是拆开

定积分

暂无

积分中值定理

积分第一中值定理

这个定理的几何意义是：对于在区间[a, b]上连续的函数y = f(x)，由曲线y = f(x)、x = a

、x = b以及x轴所围成的曲边梯形的面积等于以区间[a, b]为底，以这个区间内某一点ξ处的

函数值f(ξ)为高的矩形的面积。

积分第二中值定理

∫
b

a

f(x)g(x)dx = g(a)∫
ξ

a

f(x)dx

当被积函数含有√x2 + a2时，也可令x = a sinh t，因为

√x2 + a2 =√a2 sinh2 t+ a2 = a cosh t，这样代换后可以简化积分运算。

设函数u = u(x)及v = v(x)具有连续导数，那么

∫ u(x)v′(x)dx = u(x)v(x) − ∫ v(x)u′(x)dx

也可以写成

∫ udv = uv− ∫ vdu

若函数f(x)在闭区间[a, b]上连续，则在[a, b]上至少存在一点ξ，使得

∫
b

a

f(x)dx = f(ξ)(b− a)

第一形式：设f(x)在[a, b]上可积，g(x)在[a, b]上单调递减且g(x) ≥ 0，则存在ξ ∈ [a, b]，使

得

第二形式：设f(x)在[a, b]上可积，g(x)在[a, b]上单调，那么存在ξ ∈ [a, b]，使得



∫
b

a

f(x)g(x)dx = g(a)∫
ξ

a

f(x)dx+ g(b)∫
b

ξ

f(x)dx

泰勒公式

带佩亚诺余项

若函数f(x)在点x0存在直至n阶导数，则

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)
2!

(x− x0)2 +⋯+
f (n)(x0)

n!
(x− x0)n + o((x− x0)n)

其中o((x− x0)n)为佩亚诺余项，表示当x→ x0时，余项是比(x− x0)n高阶的无穷小.

带拉格朗日余项

若函数f(x)在含有x0的某个开区间(a, b)内具有n+ 1阶导数，则对于∀x ∈ (a, b)，有

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)
2!

(x− x0)2 +⋯+
f (n)(x0)

n!
(x− x0)n +Rn(x)

其中Rn(x) =
f (n+1)(ξ)
(n+ 1)!

(x− x0)n+1，ξ是介于x0与x之间的某个值.

常见泰勒公式

指数函数

ex = 1 + x+
x2

2!
+

x3

3!
+⋯+

xn

n!
+⋯

对数函数

ln(1 + x) = x−
x2

2
+

x3

3
−⋯+ (−1)n−1

xn

n
+⋯

三角函数

sinx = x−
x3

3!
+

x5

5!
−⋯+ (−1)n−1

x2n−1

(2n− 1)!
+⋯

cosx = 1 −
x2

2!
+

x4

4!
−⋯+ (−1)n

x2n

(2n)!
+⋯

tanx = x+
x3

3
+
2x5

15
+⋯

正弦函数：

余弦函数：

正切函数：



反三角函数

arcsinx = x+
1
2
⋅
x3

3
+
1 ⋅ 3
2 ⋅ 4

⋅
x5

5
+⋯

arctanx = x−
x3

3
+

x5

5
−⋯+ (−1)k−1

x2k−1

2k− 1
+⋯

双曲函数

sinhx = x+
x3

3!
+

x5

5!
+⋯+ (−1)k−1

x2k−1

(2k− 1)!
+⋯

coshx = 1 +
x2

2!
+

x4

4!
+⋯+ (−1)k

x2k

(2k)!
+⋯

幂函数

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +⋯+

α(α− 1)⋯(α− n+ 1)
n!

xn +⋯

自己推到:
麦克劳林展开式为：

f(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 +⋯+
f (n)(0)
n!

xn + rn(x)

其中rn(x)为余项

体积

暂无

弧长

（1）直角坐标形式

若曲线的方程为y = f(x)，a ≤ x ≤ b，且f(x)在区间[a, b]上具有连续导数，则曲线弧长s的计

算公式为：

s = ∫
b

a

√1 + [f ′(x)]2dx

反正弦函数：

反正切函数：

双曲正弦函数：

双曲余弦函数：



（2）参数方程形式

若曲线由参数方程{ 给出，α ≤ t ≤ β，其中x(t)、y(t)在区间[α,β]上具有连续导数，

则曲线弧长s的计算公式为：

s = ∫
β

α

√[x′(t)]2 + [y′(t)]2dt

（3）极坐标形式

若曲线的极坐标方程为ρ = ρ(θ)，α ≤ θ ≤ β，且ρ(θ)在区间[α,β]上具有连续导数，则曲线弧长

s的计算公式为：

s = ∫
β

α

√ρ2(θ) + [ρ′(θ)]2dθ

曲率

直角坐标系的曲率

y′′

[1 + (y′)2]
3
2

参数方程的曲率

面积

x = x(t)
y = y(t) ∣ ∣若曲线由参数方程{ 给出，t为参数。则x′ = x′(t)，y′ = y′(t)，x′′ = x′′(t)，

y′′ = y′′(t)。

x = x(t)
y = y(t)

曲率公式为

x′(t)y′′(t) − x′′(t)y′(t)

[(x′(t))2 + (y′(t))2]
3
2∣ ∣1. 直角坐标下求面积

∫
b

a

f(x)dx

设函数y = f(x)在区间[a, b]上连续且f(x) ⩾ 0，那么由曲线y = f(x)，直线x = a，

x = b以及x轴所围成的曲边梯形的面积

2. 极坐标下求面积
由极坐标方程ρ = ρ(θ)，α ⩽ θ ⩽ β所围成的图形的面积

S =
1
2
∫

β

α

ρ2(θ)dθ



直角坐标与极坐标的转换关系

一些例题

lim
n→∞

1
n

n

∑
i=1

ln(1 + 1/i)
sin 1/i

lim
n→∞

1
n

n

∑
i=1

ln(1 + 1/i)
sin 1/i

= lim
n→∞

ln(1 + 1/n)
sin 1/n

= lim
x→0

ln(1 + x)
sinx

= 1

黎曼和

当分割子区间的最大长度λ→ 0（n→ +∞且分割越来越细）时，黎曼和的极限若存在，就是

函数f(x)在区间[a, b]上的定积分，即

∫
b

a

f(x)dx = lim
λ→0

n

∑
i=1

f(ξi)Δxi

第十章 数项级数
一、正项级数敛散性判别法

（一）比较判别法

3. 参数方程下求面积

A = ∫
β

α

y(t)x′(t)dt

若曲线C的参数方程为{ ，α ⩽ t ⩽ β，且x(t)，y(t)具有连续的一阶导数，x′(t)

不变号。

x = x(t)
y = y(t)

当x′(t) > 0时，曲线C与直线x = a,x = b, y = 0所围成的图形的面积

直角坐标用(x, y)表示，极坐标用(ρ, θ)表示，它们之间的转换公式为x = ρ cos θ，

y = ρ sin θ，且ρ2 = x2 + y2

求极限

解答：

1. 原理：设
∞

∑
n=1

an和
∞

∑
n=1

bn是两个正项级数，且an ≤ bn(n = 1, 2,⋯)。若
∞

∑
n=1

bn收敛，则

∞

∑
n=1

an也收敛；若
∞

∑
n=1

an发散，则
∞

∑
n=1

bn也发散。



（二）比较判别法的极限形式

（三）比值判别法（达朗贝尔判别法）

（四）根值判别法（柯西判别法）

（五）积分判别法

2. 例如：判断
∞

∑
n=1

1
n2 + 1

的敛散性。因为
1

n2 + 1
<

1
n2
，而

∞

∑
n=1

1
n2
是收敛的p级数（

p = 2 > 1），所以
∞

∑
n=1

1
n2 + 1

收敛。

1. 原理：设
∞

∑
n=1

an和
∞

∑
n=1

bn是两个正项级数，且 lim
n→∞

an

bn
= l（ $ 0 < l <+\infty），则

\displaystyle\sum{n = 1}^{\infty}a{n}与\displaystyle\sum{n = 1}^{\infty}b{n}$敛散性相同。

2. 例如：判断
∞

∑
n=1

sin
1
n
的敛散性。因为 lim

n→∞

sin 1
n

1
n

= 1，而
∞

∑
n=1

1
n
发散，所以

∞

∑
n=1

sin
1
n
发散。

1. 原理：设
∞

∑
n=1

an是正项级数，且 lim
n→∞

an+1

an
= ρ。当ρ < 1时，级数

∞

∑
n=1

an收敛；当ρ > 1（包

括ρ = +∞）时，级数
∞

∑
n=1

an发散；当ρ = 1时，判别法失效。

2. 例如：判断
∞

∑
n=1

n!
nn
的敛散性。计算

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!
(n+ 1)n+1

⋅
nn

n!
= lim

n→∞
( n

n+ 1
)

n

=
1
e
< 1，所以级数收敛。

1. 原理：设
∞

∑
n=1

an是正项级数，且 lim
n→∞

n√an = ρ。当ρ < 1时，级数
∞

∑
n=1

an收敛；当ρ > 1（包

括ρ = +∞）时，级数
∞

∑
n=1

an发散；当ρ = 1时，判别法失效。

2. 例如：判断
∞

∑
n=1

( n

2n+ 1
)

n

的敛散性。 lim
n→∞

n√an = lim
n→∞

n

2n+ 1
=
1
2
< 1，所以该级数收

敛。

1. 原理：设f(x)是[1,+∞)上非负、单调递减的连续函数，令an = f(n)，则级数
∞

∑
n=1

an与反常

积分∫
+∞

1
f(x)dx同敛散。

2. 例如：判断
∞

∑
n=2

1
n lnn

的敛散性。考虑函数f(x) = 1
x lnx，

∫
+∞

2

1
x lnx

dx = lim
t→+∞

∫
t

2

1
x lnx

dx = lim
t→+∞

[ln(lnx)]t2 = +∞，所以级数
∞

∑
n=2

1
n lnn

发散。



（六）拉阿比判别法

所以级数
∞

∑
n=1

(2n)!
(n!)2

⋅
1
2n
发散。

二、交错级数敛散性判别法

（一）莱布尼茨判别法

1. 原理：设
∞

∑
n=1

an是正项级数，且 lim
n→∞

n( an

an+1
− 1) = R。

当R > 1时，级数
∞

∑
n=1

an收敛；

当R < 1时，级数
∞

∑
n=1

an发散；

当R = 1时，判别法失效。

2. 例如：判断级数
∞

∑
n=1

(2n)!
(n!)2

⋅
1
2n
的敛散性。 计算 lim

n→∞
n( an

an+1
− 1)：

an =
(2n)!
(n!)2

⋅
1
2n

an+1 =
(2(n+ 1))!
((n+ 1)!)2

⋅
1

2n+1

an

an+1
=
(2n)!
(n!)2

⋅
1
2n

⋅
((n+ 1)!)2

(2(n+ 1))!
⋅ 2n+1

=
(2n)!
(n!)2

⋅
((n+ 1)!)2

(2n+ 2)!
⋅ 2

=
(2n)!
(n!)2

⋅
(n+ 1)2 ⋅ (n!)2

(2n+ 2) ⋅ (2n+ 1) ⋅ (2n)!
⋅ 2

=
(n+ 1)2

(2n+ 2) ⋅ (2n+ 1)
⋅ 2

=
(n+ 1)2

(n+ 1)(2n+ 1)
⋅ 2

=
n+ 1
2n+ 1

⋅ 2

lim
n→∞

n( an

an+1
− 1) = lim

n→∞
n( n+ 1

2n+ 1
⋅ 2 − 1)

= lim
n→∞

n( 2n+ 2 − (2n+ 1)
2n+ 1

)

= lim
n→∞

n ⋅
1

2n+ 1

= lim
n→∞

n

2n+ 1

=
1
2
< 1



三、任意项级数敛散性判别法

（一）绝对收敛判别法

（二）条件收敛判别法

如果
∞

∑
n=1

an收敛，但
∞

∑
n=1

|an|发散，则
∞

∑
n=1

an条件收敛。例如
∞

∑
n=1

(−1)n−1
1
n
收敛，但

∞

∑
n=1

(−1)n−1
1
n

=
∞

∑
n=1

1
n
发散，所以

∞

∑
n=1

(−1)n−1
1
n
条件收敛。

第十一章到第十三章

狄利克雷判别法：

一、数项级数的狄利克雷判别法

设级数∑∞
n=1 anbn，如果满足：

则级数∑∞
n=1 anbn收敛。

二、函数项级数的狄利克雷判别法

设函数项级数：

1. 原理：对于交错级数
∞

∑
n=1

(−1)n−1an(an > 0)，如果an ≥ an+1(n = 1, 2,⋯)，且 lim
n→∞

an = 0

，那么交错级数
∞

∑
n=1

(−1)n−1an收敛。

2. 例如：判断
∞

∑
n=1

(−1)n−1
1
n
的敛散性。an = 1

n
，显然

1
n
≥

1
n+ 1

，且 lim
n→∞

1
n
= 0，所以该交

错级数收敛。

1. 原理：若
∞

∑
n=1

|an|收敛，则
∞

∑
n=1

an绝对收敛，且
∞

∑
n=1

an收敛。

2. 例如：判断
∞

∑
n=1

sinn
n2
的敛散性。因为

sinn
n2

≤
1
n2
，而

∞

∑
n=1

1
n2
收敛，所以

∞

∑
n=1

sinn
n2
绝对收

敛，从而该级数收敛。 ∣ ∣∣ ∣1. 部分和序列An =∑n
k=1 ak有界，即存在常数M，使得对所有n，都有：

|An| =
n

∑
k=1

ak ≤M∣ ∣2. 数列{bn}单调趋于零，即：
单调递减或单调递增； limn→∞ bn = 0。



∞

∑
n=1

an(x)bn(x)

如果满足：

An(x) =
n

∑
k=1

ak(x)

有界，即存在常数M(x)，使得：

|An(x)| ≤M(x)

则函数项级数∑∞
n=1 an(x)bn(x)收敛。

三、广义积分的狄利克雷判别法

设积分：

∫
+∞

a

f(x)g(x) dx

如果满足：

F(x) = ∫
x

a

f(t) dt

有界，即存在常数M，使得：

|F(x)| ≤M, x ≥ a

则广义积分∫ +∞a f(x)g(x) dx收敛。

四、瑕积分的狄利克雷判别法

设积分存在瑕点x = a（假设瑕点为积分下限，其他点类似），考虑积分：

∫
b

a

f(x)g(x) dx

如果满足：

1. 对每个固定的x，部分和序列

2. 函数序列{bn(x)}对n单调趋于零，即满足：

单调性：对于每个固定的x，bn(x)关于n单调递减或递增；

极限性：对每个固定的x，有limn→∞ bn(x) = 0。

1. 积分的原函数

2. 函数g(x)满足：

在区间[a, +∞)上单调趋于零； limx→+∞ g(x) = 0。



F(x) = ∫
x

a

f(t) dt

在靠近瑕点x = a时有界。

则瑕积分∫ b

a
f(x)g(x) dx收敛。

阿贝尔判别法：

一、数项级数的阿贝尔判别法

考虑级数：

∞

∑
n=1

anbn

如果满足以下两个条件：

则级数∑∞
n=1 anbn收敛。

二、函数项级数的阿贝尔判别法

判别法描述：

考虑函数项级数：

∞

∑
n=1

an(x)bn(x)

如果满足：

∞

∑
n=1

an(x)

收敛；

1. 积分的原函数：

2. 函数g(x)满足：

在(a, b]上单调趋于零（当x→ a+时）； -limx→a+ g(x) = 0。

1. 级数∑∞
n=1 an收敛（而非仅仅有界）；

2. 数列{bn}为单调有界数列，即：
存在有限的常数M，使得|bn| ≤M，且单调（递增或递减）。

1. 对每个固定的x，级数

2. 对每个固定的x，函数序列{bn(x)}单调有界，即：

存在常数M(x)，使得对所有n，|bn(x)| ≤M(x)；



则函数项级数∑∞
n=1 an(x)bn(x)收敛。

三、广义积分的阿贝尔判别法

判别法描述：

考虑广义积分：

∫
+∞

a

f(x)g(x) dx

如果满足：

则广义积分∫ +∞
a

f(x)g(x) dx收敛。

四、瑕积分的阿贝尔判别法

判别法描述：

考虑具有瑕点的积分（例如积分下限有瑕点a）：

∫
b

a

f(x)g(x) dx

如果满足：

则瑕积分∫ b

a f(x)g(x) dx收敛。

总结成一句话：

第十四章 傅里叶级数
一、傅里叶级数的基本概念与公式

对于固定的x，关于n单调递增或递减。

1. 积分∫ +∞a f(x) dx收敛；

2. 函数g(x)在区间[a, +∞)上单调有界，即：

存在常数M，使得|g(x)| ≤M，且g(x)在[a, +∞)上单调。

1. 瑕积分∫ b

a
f(x) dx收敛；

2. 函数g(x)在(a, b]上单调有界，即：

存在常数M，使得对所有x ∈ (a, b]，有|g(x)| ≤M；

在区间靠近瑕点a时，函数g(x)是单调的。

狄利克雷 判别法：部分和有界 (震荡) × 单调趋零 = 收敛。
阿贝尔 判别法：已知收敛 (收敛×单调有界) = 收敛。



一个定义在区间[−l, l]上周期为2l的函数f(x)，可表示成傅里叶级数：

f(x) =
a0

2
+

∞

∑
n=1

[an cos
nπx

l
+ bn sin

nπx

l
]

系数计算公式：

a0 =
1
l
∫

l

−l
f(x) dx

an =
1
l
∫

l

−l
f(x) cos

nπx

l
dx

bn =
1
l
∫

l

−l
f(x) sin

nπx

l
dx

二、傅里叶级数的特殊区间（常见）:
（一）区间[−π,π]（标准区间）

若函数定义在[−π,π]，周期为2π，傅里叶级数为：

f(x) =
a0

2
+

∞

∑
n=1

(an cosnx+ bn sinnx)

a0 =
1
π
∫

π

−π
f(x) dx, an =

1
π
∫

π

−π
f(x) cosnx dx, bn =

1
π
∫

π

−π
f(x) sinnx dx

（二）区间[0, 2π]

若函数定义在区间[0, 2π]，周期为2π，傅里叶级数展开为：

f(x) =
a0

2
+

∞

∑
n=1

(an cosnx+ bn sinnx)

a0 =
1
π
∫

2π

0
f(x) dx, an =

1
π
∫

2π

0
f(x) cosnx dx, bn =

1
π
∫

2π

0
f(x) sinnx dx

（三）区间[−l, l]（一般区间）

一般区间的情况（区间长度为2l），傅里叶级数通式为：

常数项a0：

余弦项系数an（n ≥ 1）：

正弦项系数bn（n ≥ 1）：

系数公式：

系数计算：



f(x) =
a0

2
+

∞

∑
n=1

(an cos
nπx

l
+ bn sin

nπx

l
)

a0 =
1
l
∫

l

−l
f(x) dx, an =

1
l
∫

l

−l
f(x) cos

nπx

l
dx, bn =

1
l
∫

l

−l
f(x) sin

nπx

l
dx

三、小结（核心公式记忆）：

f(x) =
a0

2
+

∞

∑
n=1

(an cos
nπx

l
+ bn sin

nπx

l
)

a0 =
1
l
∫

l

−l
f(x)dx, an =

1
l
∫

l

−l
f(x) cos

nπx

l
dx, bn =

1
l
∫

l

−l
f(x) sin

nπx

l
dx

第十五章——第二十章
一、二元函数的极限与连续性

1. 函数极限定义

假设函数f(x, y)定义在点(x0, y0)的去心领域内，若对任意路径(x, y) → (x0, y0)，极限值均存在

且相等，则记为极限：

lim
(x,y)→(x0,y0)

f(x, y) = L

2. 二元函数极限存在判定

常用方法：

3. 二元函数的连续性

若二元函数满足：

系数计算：

通式记忆：

一般系数公式：

区间特化记忆：

标准区间[−π,π]时，公式中l = π；

区间[0, 2π]时，积分区间改为[0, 2π]。

当沿不同路径趋于同一点的极限值不同时，则该二元函数极限不存在。

沿特殊路径（如x = x0,y = y0,y = k(x− x0)等）求极限并比较。

极坐标法：将(x, y)替换为(r cos θ, r sin θ)，考察当r→ 0时的极限。



lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0)

则称函数在点(x0, y0)连续。

连续函数的性质：

二、二元函数的偏导数与高阶偏导

1. 偏导数定义

给定二元函数z = f(x, y)，偏导数表示函数沿坐标轴方向的变化率：

fx(x, y) =
∂f
∂x

= lim
Δx→0

f(x+Δx, y) − f(x, y)
Δx

fy(x, y) =
∂f
∂y

= lim
Δy→0

f(x, y+Δy) − f(x, y)
Δy

2. 高阶偏导
常见的二阶偏导：

fxx(x, y) =
∂ 2f
∂x2

, fyy(x, y) =
∂ 2f
∂y2

, fxy(x, y) =
∂ 2f
∂y∂x

, fyx(x, y) =
∂ 2f
∂x∂y

偏导连续、光滑函数具有性质：

fxy(x, y) = fyx(x, y)

（克莱罗定理）

三、二元函数的可微性与全微分

1. 二元函数的可微定义
设二元函数z = f(x, y)，若其变化量可表示为线性主部与高阶无穷小之和：

Δz = f(x+Δx, y+Δy) − f(x, y) = fx(x, y)Δx+ fy(x, y)Δy+ o(ρ), (ρ =√Δx2 +Δy2)

且满足：

lim
ρ→0

o(ρ)
ρ

= 0

则称函数在该点可微。其中：

-fx(x, y), fy(x, y)为函数在(x, y)点的偏导数。 -o(ρ)为高阶无穷小量，其在点邻域内趋于零的速
度快于线性小量ρ。

基本运算法则（加、减、乘、除、复合运算）在连续点均保持连续。

多项式函数、指数函数、三角函数在定义域内连续。



几何意义： 可微函数在该点局部表现如同一个线性函数，且误差项相对于线性近似部分极
小，保证函数在该点附近可用线性函数很好地逼近。

2. 全微分形式

若函数在点(x, y)可微，则全微分为：

dz = fx(x, y)dx+ fy(x, y)dy

作为函数在该点的线性近似。

3. 可微性与连续性、偏导关系：

函数可微 ⇒ 函数必定连续，且偏导数存在。但偏导数存在不能保证函数一定可微。充分条件
（常见判定定理）：

四、二元函数的极值与最小二乘法

1. 极值

若点(x0, y0)为极值点（可能极大或极小），则有：

fx(x0, y0) = 0, fy(x0, y0) = 0

二阶导数判别法

定义 Hessian 判别式：

H =

2. 最小二乘法（Least Squares Method）
拟合数据曲线，用以确定线性模型参数：

对于拟合函数y = ax+ b，最小化平方误差之和：

S(a, b) =
n

∑
i=1

(yi − axi − b)2

通过偏导求驻点建立法方程：

∂S
∂a

= 0,
∂S
∂b

= 0

若函数两个偏导数在点附近连续，则该函数在该点一定可微。∣fxx(x0, y0) fxy(x0, y0)
fyx(x0, y0) fyy(x0, y0)∣若H > 0, fxx(x0, y0) > 0，点为极小；

若H > 0, fxx(x0, y0) < 0，点为极大；

若H < 0，则为鞍点，不为极值点。



由此解出最优参数a, b。

五、条件极值与拉格朗日乘数法

求函数f(x, y)在约束条件g(x, y) = 0下的极值。

构建拉格朗日函数：

L(x, y,λ) = f(x, y) − λg(x, y)

其中g(x, y) = h(x, y) − c为约束函数。

由方程组：

∇L = 0 ⇒

求解确定极值点。

六、含参变量的积分、广义积分与欧拉积分

1. 含参变量积分
积分形式：

F(a) = ∫
v(a)

u(a)
f(x, a) dx

求导法则（Leibniz公式）：

F ′(a) = f[v(a), a] ⋅ v′(a) − f[u(a), a] ⋅ u′(a) + ∫
v(a)

u(a)

∂f
∂a
(x, a) dx

2. 广义积分

例如：

∫
+∞

0
f(x, a) dx

判断广义积分收敛的常用方法：

3. 欧拉积分

⎧
⎨⎩

fx(x, y) − λgx(x, y) = 0
fy(x, y) − λgy(x, y) = 0
g(x, y) = 0

比较判别法

极限判别法

第一类欧拉积分（Beta函数）：



B(x, y) = ∫
1

0
tx−1(1 − t)y−1 dt, x > 0, y > 0

Γ(x) = ∫
+∞

0
tx−1e−t dt, x > 0

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

七、重积分

二重积分定义

设区域D为闭区域，则二重积分表示为：

∬
D

f(x, y) dxdy

计算方法

∬
D

f(x, y) dxdy = ∫
x=b

x=a
∫

y=g2(x)

y=g1(x)
f(x, y) dydx

x = r cos θ, y = r sin θ, dxdy = r drdθ

应用

∫
x=b

x=a
∫

y=d

y=c
f(x, y) dydx = ∫

y=d

y=c
∫

x=b

x=a
f(x, y) dxdy

第二类欧拉积分（Gamma函数）：

两者关系：

直角坐标系下的积分：

极坐标变换：

求面积、体积、质量、重心等

交换积分次序 (Fubini定理)：


