概统笔记

This commit is contained in:
2026-01-03 16:26:46 +08:00
parent a01982ebf4
commit 068dd157e5
13 changed files with 3024 additions and 0 deletions

View File

@@ -0,0 +1,97 @@
# 七、抽样分布
设 $X_1, X_2, ..., X_n$ 是来自总体的简单随机样本
**样本均值**$\bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i$
**样本方差**$S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2$
**样本标准差**$S = \sqrt{S^2}$
**常用结论**(设总体$E(X)=\mu$$D(X)=\sigma^2$
1. $E(X_i) = \mu$$D(X_i) = \sigma^2$
2. $E(\bar{X}) = \mu$$D(\bar{X}) = \frac{\sigma^2}{n}$
3. $E\left(\sum_{i=1}^{n}X_i\right) = n\mu$$D\left(\sum_{i=1}^{n}X_i\right) = n\sigma^2$
4. $E(S^2) = \sigma^2$
---
## 0. 中心极限定理
设$X_1, X_2, ..., X_n$独立同分布,且$E(X_i)=\mu$$D(X_i)=\sigma^2$则当n充分大时
$$\sum_{i=1}^{n}X_i \approx N(n\mu, n\sigma^2), \quad \bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
**二项分布特例**:若$X \sim B(n,p)$且n充分大则$X \approx N(np, np(1-p))$
---
## 1. χ²分布 (卡方分布)
**定义**:设 $X_1, X_2, ..., X_n$ 独立同分布于 N(0,1),则
$$\chi^2 = \sum_{i=1}^{n}X_i^2 \sim \chi^2(n)$$
**期望与方差**
- $E(\chi^2) = n$
- $D(\chi^2) = 2n$
**可加性**$\chi_1^2(n_1) + \chi_2^2(n_2) \sim \chi^2(n_1+n_2)$(独立时)
**重要定理**:设总体 $X \sim N(\mu, \sigma^2)$
$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$$
---
## 2. t分布学生t分布
**定义**:设 $X \sim N(0,1)$$Y \sim \chi^2(n)$X与Y独立
$$t = \frac{X}{\sqrt{Y/n}} \sim t(n)$$
**性质**
- 关于0对称
- n→∞ 时趋近于 N(0,1)
- 比正态分布"矮胖"(尾部更厚)
**重要定理**:设总体 $X \sim N(\mu, \sigma^2)$
$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
**应用**:总体方差未知时,对均值的推断
---
## 3. F分布
**定义**:设 $X \sim \chi^2(n_1)$$Y \sim \chi^2(n_2)$X与Y独立
$$F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$$
**性质**
- $\frac{1}{F(n_1,n_2)} \sim F(n_2, n_1)$
- $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_\alpha(n_2, n_1)}$
**重要定理**:设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$$Y \sim N(\mu_2, \sigma_2^2)$
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1, n_2-1)$$
**应用**:两总体方差比的推断
---
## 4. 正态总体的抽样分布总结
设 $X \sim N(\mu, \sigma^2)$$X_1, ..., X_n$ 为样本
| 条件 | 统计量 | 分布 |
|------|--------|------|
| σ²已知 | $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ | N(0,1) |
| σ²未知 | $\frac{\bar{X}-\mu}{S/\sqrt{n}}$ | t(n-1) |
| μ已知 | $\frac{\sum(X_i-\mu)^2}{\sigma^2}$ | χ²(n) |
| μ未知 | $\frac{(n-1)S^2}{\sigma^2}$ | χ²(n-1) |
---
## 5. **重点:单正态抽样分布(整体背熟)**
设 $X_1, X_2, \ldots, X_n$ 来自正态总体 $X \sim N(\mu, \sigma^2)$,则
1. $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
2. $\bar{X}$ 与 $S^2$ 相互独立
3. $\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$
4. $\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\sigma^2} \sim \chi^2(n)$
5. $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$