概统笔记

This commit is contained in:
2026-01-03 16:26:46 +08:00
parent a01982ebf4
commit 068dd157e5
13 changed files with 3024 additions and 0 deletions

View File

@@ -0,0 +1,134 @@
# 六、随机变量的数字特征
## 1. 数学期望
**定义**
离散型:设$P\{X = x_k\} = p_k$,若$\sum_{k=1}^{\infty} x_k p_k$绝对收敛,则
$$E(X) = \sum_{k=1}^{\infty} x_k p_k$$
连续型:若$\int_{-\infty}^{\infty} xf(x)dx$绝对收敛,则
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$
**随机变量函数的期望**
设$Y = g(X)$g是连续函数
- 离散型:$E(Y) = E[g(X)] = \sum_{k=1}^{\infty} g(x_k)p_k$
- 连续型:$E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
**数学期望性质**
1. 设C是常数则$E(C) = C$
2. 设X是随机变量C是常数则$E(X + C) = E(X) + C$
3. 设X是随机变量C是常数则$E(CX) = CE(X)$
4. 设X,Y是两个随机变量则$E(X \pm Y) = E(X) \pm E(Y)$(可推广到任意有限个)
5. 设X,Y是相互独立的随机变量则$E(XY) = E(X)E(Y)$(可推广到任意有限个)
---
## 2. 方差与标准差
**定义**$D(X) = E\{[X - E(X)]^2\}$
**计算公式**$D(X) = E(X^2) - [E(X)]^2$
**标准差**$\sigma(X) = \sqrt{D(X)}$
**方差的计算**
离散型:$D(X) = \sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k$
连续型:$D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x)dx$
**方差性质**
1. 设C是常数则$D(C) = 0$
2. 设X是随机变量C是常数则$D(CX) = C^2D(X)$$D(X + C) = D(X)$
3. 设X,Y是两个随机变量
$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$$
特别地若X,Y相互独立则$D(X \pm Y) = D(X) + D(Y)$
4. $D(X) = 0$的充要条件是X以概率1取常数$E(X)$,即$P\{X = E(X)\} = 1$
---
## 3. 协方差
**定义**$Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$
**计算公式**$Cov(X,Y) = E(XY) - E(X)E(Y)$
**性质**
1. $Cov(X,Y) = Cov(Y,X)$(对称性)
2. $Cov(X,C) = 0$C为常数
3. $Cov(X,X) = D(X)$
4. $Cov(aX, bY) = ab \cdot Cov(X,Y)$a,b是常数
5. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$(双线性)
6. 若X,Y相互独立则$Cov(X,Y)=0$
**与方差的关系**
$$D(X + Y) = D(X) + D(Y) + 2Cov(X,Y)$$
---
## 4. 相关系数
**定义**
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
**性质**
1. $|\rho_{XY}| \leq 1$
2. $|\rho_{XY}| = 1$的充要条件是存在常数a,b使$P\{Y = a + bX\} = 1$(线性关系)
3. 若X,Y相互独立则$\rho_{XY} = 0$(不相关)
4. **不相关 ≠ 独立**$\rho_{XY} = 0$只说明X,Y没有线性关系可能有非线性关系
**不相关的等价条件**(以下四条等价):
- $\rho_{XY} = 0$
- $Cov(X,Y) = 0$
- $E(XY) = E(X)E(Y)$
- $D(X + Y) = D(X) + D(Y)$
---
## 5. 矩
**定义**设X和Y是随机变量
| 矩的类型 | 定义 | 说明 |
|---------|------|------|
| **k阶原点矩** | $E(X^k)$$k = 1,2,...$ | 一阶原点矩就是期望E(X) |
| **k阶中心矩** | $E\{[X - E(X)]^k\}$$k = 2,3,...$ | 二阶中心矩就是方差D(X) |
| **k+l阶混合矩** | $E(X^k Y^l)$$k,l = 1,2,...$ | |
| **k+l阶混合中心矩** | $E\{[X-E(X)]^k[Y-E(Y)]^l\}$ | 二阶混合中心矩就是协方差Cov(X,Y) |
---
## 6. 切比雪夫不等式
设$E(X)=\mu$$D(X)=\sigma^2$存在,则对任意$\varepsilon>0$
$$P\{|X-\mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$
等价地,
$$P\{|X-\mu| < \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}$$
---
## 7. 数字特征典型例题
**例**设随机变量$X \sim N(\mu, \sigma^2)$$Y \sim N(\mu, \sigma^2)$且设X,Y相互独立$Z_1 = \alpha X + \beta Y$$Z_2 = \alpha X - \beta Y$的相关系数其中$\alpha, \beta$是不为零的常数)。
**解**由于$X, Y \sim N(\mu, \sigma^2)$可得
$$E(X) = E(Y) = \mu, \quad D(X) = D(Y) = \sigma^2$$
$Z_1$$Z_2$的相关系数
$$\rho_{Z_1Z_2} = \frac{E(Z_1Z_2) - E(Z_1) \cdot E(Z_2)}{\sqrt{D(Z_1)} \cdot \sqrt{D(Z_2)}}$$
$E(Z_1) = E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y) = (\alpha + \beta)\mu$
$E(Z_2) = E(\alpha X - \beta Y) = \alpha E(X) - \beta E(Y) = (\alpha - \beta)\mu$
$E(Z_1Z_2) = E[(\alpha X + \beta Y)(\alpha X - \beta Y)] = E(\alpha^2 X^2 - \beta^2 Y^2) = \alpha^2 E(X^2) - \beta^2 E(Y^2)$
$= (\alpha^2 - \beta^2)(\sigma^2 + \mu^2)$
$D(Z_1) = D(\alpha X + \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2$
$D(Z_2) = D(\alpha X - \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2$
于是
$$\rho_{Z_1Z_2} = \frac{(\alpha^2 - \beta^2)(\sigma^2 + \mu^2) - (\alpha + \beta)\mu(\alpha - \beta)\mu}{\sqrt{(\alpha^2 + \beta^2)\sigma^2} \cdot \sqrt{(\alpha^2 + \beta^2)\sigma^2}} = \frac{(\alpha^2 - \beta^2)\sigma^2}{(\alpha^2 + \beta^2)\sigma^2} = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}$$