概统笔记

This commit is contained in:
2026-01-03 16:26:46 +08:00
parent a01982ebf4
commit 068dd157e5
13 changed files with 3024 additions and 0 deletions

View File

@@ -0,0 +1,192 @@
# 五、多维随机变量及其分布
## 1. 二维分布函数
**定义**$F(x,y) = P\{X \leq x, Y \leq y\}$
**四条基本性质**
1. **单调不减性**F(x,y)是变量x和y的不减函数
- 对于任意固定的y当$x_2 > x_1$时,$F(x_2,y) \geq F(x_1,y)$
- 对于任意固定的x当$y_2 > y_1$时,$F(x,y_2) \geq F(x,y_1)$
2. **有界性**$0 \leq F(x,y) \leq 1$,且
- $F(-\infty, y) = F(x, -\infty) = 0$
- $F(-\infty, -\infty) = 0$$F(+\infty, +\infty) = 1$
3. **右连续性**$F(x+0, y) = F(x, y)$$F(x, y+0) = F(x, y)$
4. **非负性**:对于任意$(x_1, y_1), (x_2, y_2)$$x_1 < x_2$, $y_1 < y_2$
$$F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \geq 0$$
---
## 2. 联合分布
### 离散型:联合分布律
$$p_{ij} = P\{X = x_i, Y = y_j\}, \quad i,j = 1,2,...$$
**性质**
- 非负性$p_{ij} \geq 0$
- 规范性$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} p_{ij} = 1$
### 连续型:联合概率密度
$f(x,y)$$(x,y) \in \mathbb{R}^2$
**性质**
- 非负性$f(x,y) \geq 0$
- 规范性$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} f(x,y)dxdy = F(\infty, \infty) = 1$
- $f(x,y)$在点$(x,y)$连续则有$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$
**区域概率**$(X,Y)$落在平面区域$G$内的概率
$$P\{(X,Y) \in G\} = \iint_G f(x,y)dxdy$$
---
## 3. 边缘分布
**边缘分布函数**
- $F_X(x) = F(x, \infty)$
- $F_Y(y) = F(\infty, y)$
### 离散型边缘分布律
$$p_{i\cdot} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1,2,...$$
$$p_{\cdot j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1,2,...$$
### 连续型边缘概率密度
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx$$
---
## 3.1 二维均匀分布
**定义**$(X,Y)$在区域$D$上均匀分布
$$f(x,y) = \begin{cases} \frac{1}{S_D}, & (x,y) \in D \\ 0, & \text{其他} \end{cases}$$
其中$S_D$为区域D的面积
**结论1**$P\{(X,Y) \in G\} = \frac{S_G}{S_D}$(面积之比)
**结论2**$D=\{(x,y)\mid a \le x \le b, c \le y \le d\}$
$X \sim U(a,b)$$Y \sim U(c,d)$且X与Y相互独立
**结论3**XY的边缘分布不一定是均匀分布
---
## 4. 条件分布与条件密度
### 离散型
$Y = y_j$条件下X的条件分布律
$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\cdot j}}$$
$X = x_i$条件下Y的条件分布律
$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{i\cdot}}$$
### 连续型
$Y = y$条件下X的条件概率密度
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
$Y = y$条件下X的条件分布函数
$$F_{X|Y}(x|y) = P\{X \leq x | Y = y\} = \int_{-\infty}^{x} \frac{f(x,y)}{f_Y(y)}dx$$
---
## 5. 相互独立的随机变量
**定义**$F(x,y)$$F_X(x), F_Y(y)$分别是二维随机变量$(X,Y)$的分布函数及边缘分布函数若对于所有$x,y$
$$P\{X \leq x, Y \leq y\} = P\{X \leq x\}P\{Y \leq y\}$$
$$F(x,y) = F_X(x)F_Y(y)$$
则称随机变量X和Y是**相互独立**
**独立性判定**
- **连续型**X和Y相互独立 $\Leftrightarrow$ $f(x,y) = f_X(x)f_Y(y)$ 在平面上几乎处处成立
- **离散型**X和Y相互独立 $\Leftrightarrow$ 对于所有可能取值$(x_i, y_j)$ $P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}$
---
## 6. 二维正态分布(重点性质)
$(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$
1. $X \sim N(\mu_1,\sigma_1^2)$$Y \sim N(\mu_2,\sigma_2^2)$
2. $X$$Y$相互独立 $\Leftrightarrow \rho=0$
3. 任意非零线性组合$aX+bY$仍服从正态分布
---
## 7. 两个随机变量函数的分布
### (1) Z = X + Y 的分布(卷积公式)
$(X,Y)$是二维连续型随机变量具有概率密度$f(x,y)$$Z = X + Y$的概率密度为
$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f(z-y, y)dy = \int_{-\infty}^{+\infty} f(x, z-x)dx$$
若X和Y相互独立边缘概率密度为$f_X(x), f_Y(y)$则有**卷积公式**
$$f_{X+Y}(z) = f_X * f_Y = \int_{-\infty}^{+\infty} f_X(z-y)f_Y(y)dy = \int_{-\infty}^{+\infty} f_X(x)f_Y(z-x)dx$$
### (2) Z = Y/X 的分布、Z = XY 的分布
$(X,Y)$是二维连续型随机变量概率密度为$f(x,y)$
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f(x, xz)dx$$
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f(x, \frac{z}{x})dx$$
若X和Y相互独立边缘概率密度为$f_X(x), f_Y(y)$则有
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})dx$$
### (3) M = max{X,Y} 及 N = min{X,Y} 的分布
设X,Y是两个相互独立的随机变量分布函数分别为$F_X(x), F_Y(y)$
**最大值的分布**
$$F_{\max}(z) = P\{M \leq z\} = P\{X \leq z, Y \leq z\} = F_X(z)F_Y(z)$$
**最小值的分布**
$$F_{\min}(z) = P\{N \leq z\} = 1 - P\{N > z\} = 1 - P\{X > z, Y > z\}$$
$$= 1 - [1-F_X(z)][1-F_Y(z)]$$
**推广**:若$X_1, X_2, ..., X_n$独立同分布,分布函数为$F(x)$,则
- $F_{\max}(z) = [F(z)]^n$
- $F_{\min}(z) = 1 - [1-F(z)]^n$
---
## 8. 多维随机变量典型例题
**例**:设随机变量(X,Y)的概率密度为
$$f(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$$
(1) 问X和Y是否相互独立(2) 求Z = X + Y的概率密度。
**解**
(1) (X,Y)关于X的边缘概率密度为
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y)dy = \begin{cases} \int_0^{+\infty} \frac{1}{2}(x+y)e^{-(x+y)}dy, & x > 0 \\ 0, & x \leq 0 \end{cases} = \begin{cases} \frac{1}{2}(x+1)e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$$
同理,$f_Y(y) = \begin{cases} \frac{1}{2}(y+1)e^{-y}, & y > 0 \\ 0, & y \leq 0 \end{cases}$
而 $f_X(x) \cdot f_Y(y) = \begin{cases} \frac{1}{4}(x+1)(y+1)e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$
显然 $f_X(x) \cdot f_Y(y) \neq f(x,y)$故X和Y**不独立**。
(2) Z = X + Y的概率密度为
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z-x)dx$$
只有当$x > 0$且$z - x > 0$,即$0 < x < z$被积函数不为零
$z \leq 0$$f_Z(z) = 0$
$z > 0$时,
$$f_Z(z) = \int_0^z \frac{1}{2}(x + z - x) \cdot e^{-(x+z-x)}dx = \int_0^z \frac{1}{2}ze^{-z}dx = \frac{1}{2}z^2e^{-z}$$
所以 $f_Z(z) = \begin{cases} \frac{1}{2}z^2e^{-z}, & z > 0 \\ 0, & z \leq 0 \end{cases}$