Files
2025-yatcpu/lab3/verilog/verilator/sim_main.cpp

264 lines
7.6 KiB
C++

#include <verilated.h>
#include <verilated_vcd_c.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include <memory>
#include <vector>
#include "VTop.h" // From Verilating "top.v"
class Memory {
std::vector<uint32_t> memory;
public:
Memory(size_t size) : memory(size, 0) {}
uint32_t read(size_t address) {
address = address / 4;
if (address >= memory.size()) {
printf("invalid read address 0x%08x\n", address * 4);
return 0;
}
return memory[address];
}
uint32_t readInst(size_t address) {
address = address / 4;
if (address >= memory.size()) {
printf("invalid read Inst address 0x%08x\n", address * 4);
return 0;
}
return memory[address];
}
void write(size_t address, uint32_t value, bool write_strobe[4]) {
address = address / 4;
uint32_t write_mask = 0;
if (write_strobe[0]) write_mask |= 0x000000FF;
if (write_strobe[1]) write_mask |= 0x0000FF00;
if (write_strobe[2]) write_mask |= 0x00FF0000;
if (write_strobe[3]) write_mask |= 0xFF000000;
if (address >= memory.size()) {
printf("invalid write address 0x%08x\n", address * 4);
return;
}
memory[address] = (memory[address] & ~write_mask) | (value & write_mask);
}
void load_binary(std::string const& filename, size_t load_address = 0x1000) {
std::ifstream file(filename, std::ios::binary);
if (!file) {
throw std::runtime_error("Could not open file " + filename);
}
file.seekg(0, std::ios::end);
size_t size = file.tellg();
if (load_address + size > memory.size() * 4) {
throw std::runtime_error("File " + filename + " is too large (File is " +
std::to_string(size) + " bytes. Memory is " +
std::to_string(memory.size() * 4 - load_address) + " bytes.)");
}
file.seekg(0, std::ios::beg);
for (int i = 0; i < size / 4; ++i) {
file.read(reinterpret_cast<char*>(&memory[i + load_address / 4]),
sizeof(uint32_t));
}
}
};
class VCDTracer {
VerilatedVcdC* tfp = nullptr;
public:
void enable(std::string const& filename, VTop& top) {
Verilated::traceEverOn(true);
tfp = new VerilatedVcdC;
top.trace(tfp, 99);
tfp->open(filename.c_str());
tfp->set_time_resolution("1ps");
tfp->set_time_unit("1ns");
if (!tfp->isOpen()) {
throw std::runtime_error("Failed to open VCD dump file " + filename);
}
}
void dump(vluint64_t time) {
if (tfp) {
tfp->dump(time);
}
}
~VCDTracer() {
if (tfp) {
tfp->close();
delete tfp;
}
}
};
uint32_t parse_number(std::string const& str) {
if (str.size() > 2) {
auto&& prefix = str.substr(0, 2);
if (prefix == "0x" || prefix == "0X") {
return std::stoul(str.substr(2), nullptr, 16);
}
}
return std::stoul(str);
}
class Simulator {
vluint64_t main_time = 0;
vluint64_t max_sim_time = 10000;
uint32_t halt_address = 0;
size_t memory_words = 1024 * 1024; // 4MB
bool dump_vcd = false;
std::unique_ptr<VTop> top;
std::unique_ptr<VCDTracer> vcd_tracer;
std::unique_ptr<Memory> memory;
bool dump_signature = false;
unsigned long signature_begin, signature_end;
std::string signature_filename;
std::string instruction_filename;
public:
void parse_args(std::vector<std::string> const& args) {
if (auto it = std::find(args.begin(), args.end(), "-halt");
it != args.end()) {
halt_address = parse_number(*(it + 1));
}
if (auto it = std::find(args.begin(), args.end(), "-memory");
it != args.end()) {
memory_words = std::stoull(*(it + 1));
}
if (auto it = std::find(args.begin(), args.end(), "-time");
it != args.end()) {
max_sim_time = std::stoull(*(it + 1));
}
if (auto it = std::find(args.begin(), args.end(), "-vcd");
it != args.end()) {
vcd_tracer->enable(*(it + 1), *top);
}
if (auto it = std::find(args.begin(), args.end(), "-signature");
it != args.end()) {
dump_signature = true;
signature_begin = parse_number(*(it + 1));
signature_end = parse_number(*(it + 2));
signature_filename = *(it + 3);
}
if (auto it = std::find(args.begin(), args.end(), "-instruction");
it != args.end()) {
instruction_filename = *(it + 1);
}
}
Simulator(std::vector<std::string> const& args)
: top(std::make_unique<VTop>()),
vcd_tracer(std::make_unique<VCDTracer>()) {
parse_args(args);
memory = std::make_unique<Memory>(memory_words);
if (!instruction_filename.empty()) {
memory->load_binary(instruction_filename);
}
}
void run() {
top->reset = 1;
top->clock = 0;
top->io_instruction_valid = 1;
top->eval();
vcd_tracer->dump(main_time);
uint32_t data_memory_read_word = 0;
uint32_t inst_memory_read_word = 0;
uint32_t timer_interrupt = 0;
uint32_t counter = 0;
uint32_t clocktime = 1;
bool memory_write_strobe[4] = {false};
int uart_write_time_counter = 0, uart_write_time_limit = 4; // every limit, an UART write completes; this is tricky part
while (main_time < max_sim_time && !Verilated::gotFinish()) {
++main_time;
++counter;
if(counter > clocktime){
top->clock = !top->clock;
counter = 0;
}
if(main_time & 0x00ff0 == 0xff0) {
top->io_interrupt_flag = 1;
} else{
top->io_interrupt_flag = 0;
}
if (main_time > 2) {
top->reset = 0;
}
// top->io_mem_slave_read_data = memory_read_word;
top->io_memory_bundle_read_data = data_memory_read_word;
top->io_instruction = inst_memory_read_word;
top->clock = !top->clock;
top->eval();
top->io_interrupt_flag = 0;
if (top->io_device_select == 2 && top->io_memory_bundle_write_enable) {
if (uart_write_time_counter == 0) std::cout << (char)top->io_memory_bundle_write_data << std::flush; // Output to UART
uart_write_time_counter = (uart_write_time_counter + 1) % uart_write_time_limit;
}
else {
uart_write_time_counter = 0;
}
data_memory_read_word = memory->read(top->io_memory_bundle_address);
inst_memory_read_word = memory->readInst(top->io_instruction_address);
if (top->io_memory_bundle_write_enable) {
memory_write_strobe[0] = top->io_memory_bundle_write_strobe_0;
memory_write_strobe[1] = top->io_memory_bundle_write_strobe_1;
memory_write_strobe[2] = top->io_memory_bundle_write_strobe_2;
memory_write_strobe[3] = top->io_memory_bundle_write_strobe_3;
memory->write(top->io_memory_bundle_address, top->io_memory_bundle_write_data,
memory_write_strobe);
}
vcd_tracer->dump(main_time);
if (halt_address) {
if (memory->read(halt_address) == 0xBABECAFE) {
break;
}
}
// print simulation progress in percentage every 1%
if (main_time % (max_sim_time / 100) == 0) {
std::cout << "Simulation progress: " << (main_time * 100 / max_sim_time) << "%" << std::endl;
}
}
if (dump_signature) {
char data[9] = {0};
std::ofstream signature_file(signature_filename);
for (size_t addr = signature_begin; addr < signature_end; addr += 4) {
snprintf(data, 9, "%08x", memory->read(addr));
signature_file << data << std::endl;
}
}
}
~Simulator() {
if (top) {
top->final();
}
}
};
int main(int argc, char** argv) {
Verilated::commandArgs(argc, argv);
std::vector<std::string> args(argv, argv + argc);
Simulator simulator(args);
simulator.run();
return 0;
}