
实验四：总线接口设计与实现

朱梓涵 学号：24325356

2025 年 12 月 21 日

1 实验目的

本实验的主要目的是：

1. 理解 AXI4-Lite 总线协议的基本原理和通信机制。

2. 学习使用状态机实现总线协议。

3. 掌握主从设备之间的握手通信过程。

4. 理解 MMIO（Memory-Mapped I/O）的工作原理。

5. 将总线协议集成到流水线 CPU 中。

2 实验环境

� 操作系统: Windows 11

� 开发工具: IntelliJ IDEA

� 构建工具: SBT

� 仿真与测试: Verilator, chiseltest

3 实验原理

3.1 AXI4-Lite 协议概述

AXI4-Lite 是总线协议的简化版本。它包含 5 个独立的通道：

� 读地址通道（AR）：主机发送读地址。

� 读数据通道（R）：从机返回读取的数据。



实验四：总线接口设计与实现

� 写地址通道（AW）：主机发送写地址。

� 写数据通道（W）：主机发送写数据。

� 写响应通道（B）：从机返回写操作响应。

3.2 通信框架

本实验采用的通信框架如下：

� CPU 侧：通过 AXI4LiteMasterBundle 接口发起读写请求。

� AXI4LiteMaster：将简单的读写请求转换为符合 AXI4-Lite 协议的信号。

� AXI4LiteChannels：5 个通道的信号线，符合 AXI4-Lite 规范。

� AXI4LiteSlave：接收 AXI4-Lite 协议信号，转换为设备可理解的读写操作。

� 设备侧：通过 AXI4LiteSlaveBundle 接口响应读写请求。

3.3 握手机制

AXI4-Lite 协议采用 VALID/READY 握手机制：

� 发送方通过 VALID 信号表示数据有效。

� 接收方通过 READY 信号表示准备接收。

� 只有当 VALID 和 READY 同时为高时，握手完成，数据传输成功。

4 模块实现与分析

4.1 状态机设计

本实验使用状态机实现 AXI4-Lite 协议。定义了以下状态：

object AXI4LiteStates extends ChiselEnum {

val Idle , ReadAddr , ReadDataWait , ReadData ,

WriteAddr , WriteData , WriteResp = Value

}

Listing 1: 状态定义

2



实验四：总线接口设计与实现

4.2 AXI4LiteMaster 实现

4.2.1 主机状态机逻辑

1. Idle 状态：等待来自 CPU 的读写请求。收到读请求时，保存地址并转到 ReadAddr

状态；收到写请求时，保存地址和数据并转到 WriteAddr 状态。

2. ReadAddr 状态：拉高 ARVALID，发送读地址 ARADDR。等待从机 ARREADY 信号，握

手完成后，拉高 RREADY，转到 ReadData 状态。

3. ReadData 状态：保持 RREADY 为高，等待从机 RVALID。收到 RVALID 时，锁存

RDATA，拉高 readvalidΓ∗hØfiæCPU ıfiffiIdle∆Θ

3. WriteAddr 状状状态态态：拉高 AWVALID，发送写地址 AWADDR。等待从机 AWREADY 信号，握

手完成后，拉高 WVALID，转到 WriteData 状态。

4. WriteData 状状状态态态：保持 WVALID 为高，发送 WDATA 和 WSTRB。等待从机 WREADY 信

号，握手完成后，拉高 BREADY，转到 WriteResp 状态。

5. WriteResp 状状状态态态：保持 BREADY 为高，等待从机 BVALID。收到 BVALID 时，拉高

writevalidΓ∗hØfiffiIdle∆Θ

4.2.2 关键代码实现

switch(state) {

is(AXI4LiteStates.Idle) {

when(io.bundle.read) {

addr := io.bundle.address

state := AXI4LiteStates.ReadAddr

ARVALID := true.B

}. elsewhen(io.bundle.write) {

addr := io.bundle.address

write_data := io.bundle.write_data

write_strobe := io.bundle.write_strobe

state := AXI4LiteStates.WriteAddr

AWVALID := true.B

}

}

}

3



实验四：总线接口设计与实现

Listing 2: 主机状态机核心代码

此外，当主机不在 Idle 状态时，busy 信号为高，拒绝新的请求：

io.bundle.busy := state =/= AXI4LiteStates.Idle

且 valid 信号在状态机执行前清零，确保只持续一个周期：

when(read_valid) { read_valid := false.B }

when(write_valid) { write_valid := false.B }

4.3 AXI4LiteSlave 实现

4.3.1 从机状态机逻辑

1. Idle状态：清除所有控制信号。优先响应读请求（ARVALID），收到时保存地址，拉高

ARREADY，转到 ReadAddr。收到写请求时，保存地址，拉高 AWREADY，转到 WriteAddr。

2. ReadAddr状态：拉低 ARREADY，拉高 read信号通知设备读取数据，转到 ReadData

状态。

3. ReadData 状态：保持 read 为高，等待设备 readvalidΘ60∆X

3. WriteAddr 状状状态态态：拉低 AWREADY，等待主机 WVALID。收到写数据后，锁存数据和

写选通，拉高 WREADY 和 write，转到 WriteData。

4. WriteData 状状状态态态：拉低 WREADY 和 write，拉高 BVALID，转到 WriteResp。

5. WriteResp 状状状态态态：保持 BVALID 为高，等待主机 BREADY。握手完成后返回 Idle

状态。

4.3.2 关键代码实现

switch(state) {

is(AXI4LiteStates.Idle) {

when(io.channels.read_address_channel.ARVALID) {

addr := io.channels.read_address_channel.ARADDR

ARREADY := true.B

state := AXI4LiteStates.ReadAddr

4



实验四：总线接口设计与实现

}. elsewhen(io.channels.write_address_channel.AWVALID) {

addr := io.channels.write_address_channel.AWADDR

AWREADY := true.B

state := AXI4LiteStates.WriteAddr

}

}

}

Listing 3: 从机状态机核心代码

使用寄存器保证 RDATA 在 RVALID 为高时保持稳定：

val rdataReg = RegInit (0.U(dataWidth.W))

io.channels.read_data_channel.RDATA := rdataReg

4.4 性能优化

本实现采用了以下优化策略：

1. 流水化握手：在地址握手完成后立即准备数据握手，减少等待周期。

2. 优先级处理：从机优先响应读请求，提高取指效率。

3. 信号稳定性：使用寄存器锁存关键数据，避免毛刺。

5 CSR 指令与总线交互

CSR 指令在总线协议中的交互主要体现在 MMIO（Memory-Mapped I/O）上。CPU

通过地址映射访问 CSR 寄存器或外设寄存器：

� 读写 CSR 时，控制单元发出相应的读写请求。

� AXI4-Lite Master 接收请求，将地址和数据转换为总线事务。

� AXI4-Lite Slave 根据地址将请求路由到具体的 CSR 模块或外设。

� 通过握手机制，确保数据传输的正确性和稳定性。

5



实验四：总线接口设计与实现

6 测试结果与分析

6.1 测试原理

BusTest.scala 包含多个测试用例，验证 AXI4-Lite 实现的正确性：

� FunctionalTest：创建 TestBox 模块，模拟主从机忙碌状态，验证读写事务的地址、

数据、选通信号及 valid 信号时序。

� 连续事务测试：随机生成 1000 个读写事务，模拟从机忙碌状态，验证高负载下的总

线稳定性。

� 其他测试：包括 TimerTest（定时器）、MemoryTestF（内存）和 ROMLoaderTestF

（ROM 加载）。

6.2 分析

1. 正确性验证：所有测试用例通过，说明实现符合 AXI4-Lite 协议规范。数据传输正

确，地址、数据、选通信号及 valid 信号时序均符合预期。

2. 性能分析：单次读写事务的握手周期符合设计预期（约 3-4 周期）。连续事务测试证

明了总线在高负载下的可靠性。

7 改进建议

1. 建议：提供更多调试案例和方法指导。

建议增加具体的调试案例，例如如何追踪一条指令在总线中的完整传输过程，如何分

析波形图定位握手失败问题等。

2. 建议：增加可视化工具。

建议提供或推荐一些工具，能够将总线上的信号交互以图形化方式展示，辅助理解握

手过程。

8 实验结论

通过本次实验，我深入理解了 AXI4-Lite 总线协议的工作原理，掌握了使用状态机实

现复杂通信协议的方法。我成功实现了：

6



实验四：总线接口设计与实现

� 符合 AXI4-Lite 规范的主机和从机模块。

� 基于 VALID/READY 握手机制的通信流程。

� 完善的测试用例，验证了总线的正确性和稳定性。

本次实验不仅提升了我的硬件设计能力，也让我对计算机系统中各模块间的互连和通

信有了更深刻的认识，为后续更复杂的系统设计打下了坚实基础。

7


	实验目的
	实验环境
	实验原理
	AXI4-Lite 协议概述
	通信框架
	握手机制

	模块实现与分析
	状态机设计
	AXI4LiteMaster 实现
	主机状态机逻辑
	关键代码实现

	AXI4LiteSlave 实现
	从机状态机逻辑
	关键代码实现

	性能优化

	CSR 指令与总线交互
	测试结果与分析
	测试原理
	分析

	改进建议
	实验结论

