
实验二：RISC-V CPU 中断处理机制设计与实现

朱梓涵

学号：24325356

2025 年 12 月 21 日

1 实验目的

本实验旨在为已实现的单周期 RISC-V CPU 增加中断与异常处理功能，深入理解现代
处理器如何响应并处理非顺序控制流事件。实验目标包括：

1. 设计并实现控制状态寄存器模块，支持 CSR 指令的读写操作。

2. 设计并实现核本地中断控制器，使其能够正确处理外部硬件中断和内部软件中断以及
中断返回指令。

3. 理解中断处理流程中 mstatus, mepc, mcause, mtvec 等关键寄存器的作用与变化。

4. 学习通过 Chisel 测试用例和波形图分析，验证复杂的中断处理逻辑的正确性。

2 实验环境

• 操作系统: Windows 11

• 开发工具: IntelliJ IDEA

• 构建工具: SBT

• 仿真与测试: Verilator, GTKWave, MSYS2

3 模块实现与分析

本次实验的核心是新增 CSR 和 CLINT 模块，并对 Execute 模块进行扩展以支持 CSR
指令。

实验二：RISC-V CPU 中断处理机制设计与实现

3.1 CSR 模块

CSR 模块是 CPU 的状态管理中心，负责存储和更新如 mstatus, mepc 等关键状态寄
存器。

• 实现要点：

1. 独立寄存器与查找表：将重要的 CSR（如 mstatus）实现为独立的物理寄存器，
并通过一个查找表 regLUT 响应读请求，设计清晰且高效。

2. 写操作优先级：写入逻辑必须处理来自 CLINT（中断/异常事件）和 Execute
（CSR 指令）的并发写请求。设计中，CLINT 的写入拥有最高优先级，确保了中
断处理的原子性。

3. 数据旁路：为解决数据冒险，设计了旁路机制。CSR 模块会预计算出下一拍寄
存器的值并立即提供给 CLINT，使其能在当前周期就基于最新的 CPU 状态做
出正确决策。

3.1.1 代码实现

val mstatus_next = Mux(io.reg_write_enable_id &&
io.reg_write_address_id === CSRRegister.MSTATUS,
io.reg_write_data_ex , mstatus)

val mepc_next = Mux(io.reg_write_enable_id &&
io.reg_write_address_id === CSRRegister.MEPC,
io.reg_write_data_ex , mepc)

io.clint_access_bundle.mstatus := mstatus_next
io.clint_access_bundle.mepc := mepc_next

when(io.clint_access_bundle.direct_write_enable) {
mstatus := io.clint_access_bundle.mstatus_write_data
mepc := io.clint_access_bundle.mepc_write_data
mcause := io.clint_access_bundle.mcause_write_data

}.elsewhen(io.reg_write_enable_id) {
when(io.reg_write_address_id === CSRRegister.MSTATUS) {

mstatus := io.reg_write_data_ex
}

}

2

实验二：RISC-V CPU 中断处理机制设计与实现

Listing 1: CSR 模块的写入优先级与旁路逻辑

3.2 CLINT 模块

CLINT 是中断处理的决策中心，负责监视 CPU 状态，判断中断与异常事件，并生成
控制信号来改变 CPU 的执行流和状态。

• 实现要点：

1. 事件检测：通过组合逻辑判断外部中断信号 (interrupt_flag)和特定指令（mret,
ecall, ebreak）的发生。

2. 状态更新计算：根据发生的事件类型，精确计算 mepc, mcause, mstatus 这三个
CSR 寄存器需要更新成的新值。

3. PC 重定向：当陷阱 (trap) 发生或 mret 执行时，置位 interrupt_assert 标志，
并提供新的 PC 地址（中断时为 mtvec，返回时为 mepc）。

4. 处理优先级：通过一个 when-elsewhen-otherwise 结构明确了事件处理的优先
级：外部硬件中断 > mret > ecall > ebreak。

3.2.1 代码实现

val interrupt_enable = io.csr_bundle.mstatus(3)
val instruction_address = Mux(

io.jump_flag ,
io.jump_address ,
io.instruction_address + 4.U

)
val mstatus = io.csr_bundle.mstatus
val mie = mstatus(3)

when(io.interrupt_flag =/= InterruptCode.None && interrupt_enable) {
io.interrupt_assert := true.B
io.csr_bundle.direct_write_enable := true.B
io.interrupt_handler_address := io.csr_bundle.mtvec
io.csr_bundle.mepc_write_data := instruction_address
io.csr_bundle.mcause_write_data := "h80000007".U

3

实验二：RISC-V CPU 中断处理机制设计与实现

val new_mpie = mie << 7
io.csr_bundle.mstatus_write_data :=

(mstatus & (~(1.U << 3)).asUInt) | new_mpie | (3.U << 11)
}.elsewhen(io.instruction === InstructionsRet.mret) {
}

Listing 2: CLINT 模块处理硬件中断的核心逻辑

4 测试与结果分析

4.1 CLINTCSRTest: 硬件中断测试分析

4.1.1 测试机制简述

该测试旨在验证 CPU对外部硬件中断的响应是否正确。测试用例通过 chiseltest 框
架，模拟外部定时器中断信号，并验证 CLINT 模块在不同场景下的中断处理行为。
输入信号：

• interrupt_flag: 外部中断标志，测试中使用值为 0x1 的定时器中断

• instruction: 当前执行的指令

• instruction_address: 当前指令地址，表示被中断时的 PC 值

• jump_flag: 指示当前指令是否为跳转指令

• jump_address: 跳转目标地址

• csr_bundle.mtvec: 预设的中断向量表基地址 0x1144

• csr_bundle.mstatus: 初始值 0x1888，MIE=1, MPIE=1，使能中断

测试的 CLINT 功能：

1. 中断检测：检测外部中断信号 (interrupt_flag)并判断是否应该响应（检查 mstatus.MIE
位）

2. 上下文保存：将中断发生时的关键状态保存到 CSR 寄存器：

• MEPC ← PC + 4（非跳转）或跳转目标地址（跳转）

• MCAUSE ← 中断原因编码（0x80000007 表示定时器中断）

4

实验二：RISC-V CPU 中断处理机制设计与实现

• MSTATUS ← 更新状态（MIE ← 0, MPIE ← 原 MIE 值）

3. 中断跳转：跳转到中断处理程序（mtvec 中存储的地址 0x1144）

4. 中断返回：执行 mret 指令时恢复现场（PC ← MEPC，MIE ← MPIE）

5. 跳转与非跳转指令的差异：验证在跳转指令执行期间发生中断时，MEPC 保存的是跳
转目标地址而非 PC + 4

4.1.2 波形图分析：非跳转指令下的硬件中断处理

本次测试选用 CLINTCSRTest.scala中的硬件中断测试（handle external interrupt）。
测试通过手动向 CPU 输入一个外部硬件中断标志 io_interrupt_flag，并观察 CLINT 是
否正确生成中断、是否能在非跳转指令下按照 RISC-V 标准流程完成一次完整的中断处理。

测试输入信号及作用：

信号 作用

io_interrupt_flag = 1 触发一次硬件中断（定时器中断）

io_instruction = 0x13 当前执行指令（NOP，0x00000013）
io_instruction_address = 0x1900 当前 PC 值
io_jump_flag = 0 非跳转指令标志

mtvec、mstatus 初始写入 配置中断入口（0x1144）及打开 MIE

表 4.1: 硬件中断测试输入信号

此测试用来验证 CLINT 是否能完成以下功能：

• 在非跳转指令下正确响应硬件中断

• 正确生成中断断点（mepc = PC + 4）

• 正确写入中断原因（mcause = 0x80000007）

• 自动清除 MIE 并保存到 MPIE（mstatus 更新）

• 正确跳转到中断处理入口（mtvec）

波形图关键信号说明：

• io_interrupt_flag[31:0]: 外部中断标志输入

• io_instruction[31:0]: 当前执行的指令

5

实验二：RISC-V CPU 中断处理机制设计与实现

图 4.1: 硬件中断处理过程波形图 - 非跳转指令场景（8ps ∼ 12ps）

• io_instruction_address[31:0]: 当前指令地址（PC）

• io_jump_flag: 跳转指令标志

• io_jump_address[31:0]: 跳转目标地址

• io_interrupt_assert: CLINT 输出的中断响应信号

• io_interrupt_handler_address[31:0]: 中断跳转目标地址

• mtvec[31:0]: 中断向量表基地址

• mepc[31:0]: 中断返回地址

• mcause[31:0]: 中断原因寄存器

• mstatus[31:0]: 机器状态寄存器

如图所示，本测试一次完整的硬件中断处理过程（波形截图区间约为 8ps ∼ 12ps）。以
下挑选关键信号说明中断发生与处理的整个过程：

(1) 初始化阶段（约 6ps） 在中断发生前，测试代码已通过 CSR 写指令完成初始化：

• mtvec = 0x00001144：中断处理程序入口地址已配置

• mstatus = 0x00001888：全局中断已使能

– 二进制表示为 ...0001_1000_1000_1000

– bit[3] MIE = 1（全局中断使能）

– bit[7] MPIE = 1（中断前的 MIE 备份）

6

实验二：RISC-V CPU 中断处理机制设计与实现

(2) 中断发生时刻（约 9ps） 此时 CPU 正在执行一条普通的 NOP 指令，外部中断请求
到来：

• io_instruction_address = 0x00001900：当前 PC

• io_instruction = 0x00000013：NOP 指令

• io_jump_flag = 0：非跳转指令

• io_interrupt_flag：从 0x00000000 → 0x00000001（Timer0 中断）

(3) 同周期中断响应（约 9ps） CLINT模块检测到 interrupt_flag = 1且 mstatus.MIE
= 1 后，立即通过组合逻辑响应中断：

• io_interrupt_assert = 1：触发中断信号

• io_interrupt_handler_address = 0x00001144：指示 CPU 跳转到 mtvec

• 波形图上可观察到 io_interrupt_assert 出现一个脉冲

• io_interrupt_handler_address 短暂输出 0x1144 后恢复为 0

这表示 CPU 将在下一时钟周期跳转到中断处理程序入口。

(4) CSR自动更新（约 10ps） 在时钟上升沿，CSR模块根据 CLINT的 direct_write_enable
信号自动更新关键寄存器：

• mepc：从 0x00000000 → 0x00001904

– 保存的是 PC + 4（0x1900 + 4 = 0x1904）

– 这是被中断指令的下一条指令地址，中断返回后将从此处继续执行

• mcause：从 0x00000000 → 0x80000007

– bit[31] = 1：表示这是异步硬件中断（而非同步异常）

– 低位 = 7：对应 Timer 中断编码

• mstatus：从 0x00001888 → 0x00001880

– 0x1888 = ...0001_1000_1000_1000（MIE=1, MPIE=1）

– 0x1880 = ...0001_1000_1000_0000（MIE=0, MPIE=1）

7

实验二：RISC-V CPU 中断处理机制设计与实现

– MIE 被清 0：关闭全局中断，防止中断嵌套

– MPIE 保存了先前的 MIE 值（=1）

这些变化完全符合 RISC-V 特权架构手册中定义的中断进入流程。

(5) 中断标志清除（约 12ps 后） 波形图显示 io_interrupt_flag 在约 12ps 后从 1 恢
复为 0，这是测试代码模拟中断处理程序清除外设中断标志的行为。

波形分析总结：

通过以上波形图分析，可以验证 CLINT 模块在非跳转指令场景下正确实现了以下功
能：

• mepc 正确保存了 PC + 4（0x1904），确保中断返回后从下一条指令继续执行

• mcause 正确记录了中断原因（0x80000007），bit[31]=1 标识为异步中断

• mstatus 自动完成 MIE 清零和 MPIE 备份，实现中断嵌套保护机制

• 从中断检测到 CSR 更新的整个过程由硬件自动完成，无需软件干预

测试还包括跳转指令场景的验证：当 jump_flag=1, jump_address=0x1990 时发生中
断，mepc 应保存跳转目标 0x1990 而非 PC+4，且 mcause=0x8000000B。这确保了 CLINT
能正确处理各种执行场景下的中断。

4.2 CPUTest: SimpleTrapTest 分析

4.2.1 测试目的

本测试通过执行 csrc/simpletest.c中的测试程序，验证 CPU是否能够按照 RISC-V
标准正确处理中断，包括中断触发、保存现场、跳转到中断处理程序、执行处理逻辑以及

返回主程序等完整流程。

4.2.2 测试程序的中断验证机制

simpletest.c 通过以下过程验证 CPU 的中断处理正确性：

extern void enable_interrupt();

void trap_handler(void *epc, unsigned int cause){
((int)0x4) = 0x2022;

}

8

实验二：RISC-V CPU 中断处理机制设计与实现

int main(){
((int)0x4) = 0xDEADBEEF;
enable_interrupt();
for(;;);

}

Listing 3: simpletest.c 测试程序源码

主程序初始化阶段 程序首先向内存地址 0x4 写入标记值 0xDEADBEEF，用于表示” 尚未处
理中断” 的初始状态。随后调用 enable_interrupt() 函数配置中断环境：

• 将 trap_handler 的地址写入 mtvec 寄存器

• 设置 mstatus.MIE = 1，使能全局中断

等待中断触发 程序进入无限循环 for(;;)，持续等待中断到来。测试框架 TestTopModule
在仿真过程中通过 io.interrupt_flag.poke(0x1) 向 CPU 注入外部中断请求。

中断处理程序执行 当中断触发后，CPU 自动跳转到 trap_handler 函数。该函数执行唯
一的操作：将内存地址 0x4 的值修改为 0x2022。这一修改作为中断处理程序成功执行的关
键证据。

中断返回与验证 trap_handler 执行完毕后，通过 mret 指令返回主程序。测试代码随后
读取内存地址 0x4 和相关 CSR 寄存器，验证：

• 内存值已从 0xDEADBEEF 变为 0x2022

• mstatus 恢复为 0x1888（中断返回后状态）

• mcause 保持 0x80000007（记录中断原因）

该验证机制的核心在于：若无限循环能够被中断打断，且内存值发生预期变化，则证明 CPU
确实跳转到了 trap_handler，中断处理程序正确执行，且 mret 返回机制正常工作。这种
通过可观测副作用验证复杂流程的方法，是嵌入式系统测试的典型手段。

4.2.3 波形图分析

本实验从波形图中截取了两段关键片段，分别展示中断触发与进入处理、以及中断处

理程序修改内存的核心过程。

9

实验二：RISC-V CPU 中断处理机制设计与实现

图 4.2: SimpleTrapTest 中断触发与进入处理过程波形图（约 2000ps）

(1) 中断触发与进入中断处理 如图所示，展示了中断触发至 CPU进入中断处理程序的完
整时序。波形图中的关键信号及其变化如下：

• io_interrupt_flag: 在约 2000ps 从 0 → 0x00000001，表示外部中断请求到来，随
后恢复为 0

• io_interrupt_assert: 随即产生一个脉冲，说明 CLINT 已检测到中断并产生中断
响应信号

• mepc: 更新为 0x000011C4，即被中断时刻 PC的下一条指令地址，保存了中断返回点

• mcause: 被写入 0x00000007，记录中断原因为定时器中断（外部中断编码）

• mstatus: 从 0x00001888 → 0x00001880，MIE 位（bit[3]）被自动清零，MPIE 位
（bit[7]）保存了先前的 MIE 值，符合 RISC-V 中断进入时的标准行为

• io_pc_debug_read: 从原执行地址跳转到 0x00001050 附近，该地址为 mtvec 指向的
trap_handler 函数入口，随后 PC 逐条递增执行中断处理程序指令

这一段波形完整展示了中断触发、CSR 自动保存、PC 跳转到 trap_handler 的全过
程。

图 4.3: SimpleTrapTest 中断处理程序修改内存标志（约 2330ps ∼ 2390ps）

(2) 中断处理程序修改内存值 如图所示，展示了验证程序成功执行的最关键时刻。该时段

内 CPU 正在执行 trap_handler 函数体，波形图清晰记录了以下信号变化：

10

实验二：RISC-V CPU 中断处理机制设计与实现

• io_bundle_write_enable = 1: CPU 正在执行内存写操作

• io_bundle_address = 0x00000004: 写入的目标地址正是 simpletest.c中指定的内
存地址 0x4

• io_bundle_write_data = 0x00002022: 写入的数据为 0x2022，即 trap_handler 函
数中期望写入的新值

• mstatus: 保持 0x00001880，说明此时仍处于中断处理状态，MIE 位为 0

• mcause: 保持 0x80000007，中断原因记录未变

• mepc: 保持 0x000011C4，中断返回地址保持不变

• io_pc_debug_read: 在 trap_handler 函数内部的指令地址间递增，表明 CPU 正在
顺序执行中断处理程序

这一瞬间表明 CPU 已成功进入 trap_handler，并执行了中断处理中最核心的操作
——将内存地址 0x4的值从 0xDEADBEEF替换为 0x2022。这是 SimpleTrapTest验证的直接
依据，也是实验要求中明确指出的” 程序成功执行” 的关键信号。

波形分析总结 通过以上两段波形图分析，可以验证：

• CPU 能够在外部中断到来时正确进入中断处理流程

• CSR 寄存器（mepc、mcause、mstatus）均按 RISC-V 标准顺序自动更新

• PC 正确跳转到 mtvec 指向的 trap_handler 函数

• 中断处理函数成功执行，完成了将内存地址 0x4 的值从 0xDEADBEEF 修改为 0x2022
的操作

• 测试代码后续验证了 mret 返回后 mstatus 恢复为 0x1888，中断返回机制正常工作

综上所述，本次测试成功验证了 CPU 中断处理机制的完整性与正确性。

4.3 CPU 与操作系统协作处理定时器中断的机制

假设本实验设计的 CPU 上运行着一个简单的操作系统（如嵌入式实时操作系统），当
定时器中断发生时，硬件（CPU 与 CLINT）和软件（操作系统内核）将协同完成中断处理
的全过程。

11

实验二：RISC-V CPU 中断处理机制设计与实现

4.3.1 操作系统初始化阶段

操作系统在启动过程中，执行特权指令（如 csrrw）来初始化中断处理机制：

• 向 mtvec 寄存器写入中断分发程序 (interrupt dispatcher) 的入口地址

• 配置定时器硬件，设置定时周期和中断使能位

• 设置 mstatus 寄存器的 MIE 位为 1，使能全局中断

4.3.2 硬件自动响应

定时器硬件在倒计时结束后，向 CPU 发送中断信号。CPU 的 CLINT 模块检测到该
信号且 mstatus.MIE = 1 时，硬件自动执行以下原子操作：

1. 将 mstatus.MIE 位的值备份到 mstatus.MPIE 位，然后将 mstatus.MIE 清零，防止
中断嵌套

2. 将当前 PC 的下一条指令地址存入 mepc 寄存器

3. 根据中断源，在 mcause 寄存器中写入原因码（定时器中断为 0x80000007）

4. 读取 mtvec 寄存器的值，将 PC 强制设置为该地址，跳转到中断分发程序

4.3.3 操作系统软件处理

CPU 跳转到操作系统预设的中断分发程序，该程序执行以下操作：

1. 保存上下文：将所有通用寄存器（x1∼x31）压栈，保存到内核栈中

2. 识别中断源：读取 mcause 寄存器，判断中断类型

3. 分发处理：根据中断类型调用相应的中断服务例程。对于定时器中断，调用定时器中
断服务例程

4. 执行中断服务例程：定时器中断服务例程执行核心任务：

• 更新系统时钟计数器

• 检查并唤醒睡眠超时的任务

• 执行任务调度算法，决定是否需要任务切换

• 重新配置定时器，设置下一次中断

5. 恢复上下文：从内核栈中恢复所有通用寄存器

6. 执行 mret：返回被中断的程序

12

实验二：RISC-V CPU 中断处理机制设计与实现

4.3.4 硬件恢复

执行 mret 指令时，CPU 硬件自动执行以下操作：

1. 将 mstatus.MPIE 的值恢复到 mstatus.MIE，重新使能全局中断

2. 将 mepc 中保存的地址加载到 PC，返回被中断的程序

至此，CPU 无缝返回到被中断的用户程序继续执行。

5 实验结论

本次实验，我成功地为单周期 CPU 添加了完整的中断处理功能。通过设计 CSR 和
CLINT模块，我深入学习了 RISC-V的特权架构和中断处理流程，对 mstatus, mepc, mcause
等核心 CSR 的作用有了实践层面的深刻理解。解决 Windows 环境配置难题和调试复杂中
断逻辑的过程，极大地锻炼了我分析问题和解决问题的能力。通过将理论知识与硬件实现、

软件测试相结合，我不仅验证了 CPU设计的正确性，也对操作系统与硬件的交互机制有了
更具体的认识，为未来更深入的系统级学习打下了坚实的基础。

13

	实验目的
	实验环境
	模块实现与分析
	CSR 模块
	代码实现

	CLINT 模块
	代码实现

	测试与结果分析
	CLINTCSRTest: 硬件中断测试分析
	测试机制简述
	波形图分析：非跳转指令下的硬件中断处理

	CPUTest: SimpleTrapTest 分析
	测试目的
	测试程序的中断验证机制
	波形图分析

	CPU 与操作系统协作处理定时器中断的机制
	操作系统初始化阶段
	硬件自动响应
	操作系统软件处理
	硬件恢复

	实验结论

